Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induce...Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.展开更多
The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition ...The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
Carbon nanotube (CNT) arrays were fabricated on Ct-Me-N-(O) alloys with content of Ct in the range of 6-40 at.% by chemical vapour deposition. The Ct was a catalytic metal from the group of the following elements...Carbon nanotube (CNT) arrays were fabricated on Ct-Me-N-(O) alloys with content of Ct in the range of 6-40 at.% by chemical vapour deposition. The Ct was a catalytic metal from the group of the following elements: Ni, Co, Fe, Pd, while Me was a transition metal from the group of IV-VII of the periodic table (where Me=Ti, V, Cr, Zr, Nb, Mo, Ta, W, Re). Carbon nanotubes were found to grow efficiently on the alloy surface with its composition containing Ti, V, Cr, Zr, Hf, Nb or Ta. The growth of CNTs was not observed when the alloy contained W or Re. Additions of oxygen and nitrogen in the alloy facilitated the formation of oxynitrides and catalyst extrusion on the alloy surface. Replacement of the metals in alloy composition affected the diameter of the resulting CNTs. The obtained results showed that the alloy films of varying thickness (10-500 nm) may be used for the CNTs growth. The resulting CNT material was highly homogenous and its synthesis reproducible.展开更多
The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size ...The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.展开更多
Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary S...Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary Si particles with average size of less than 5μm,α-Al,Al_2CuMg,β-Al_5FeSi andδ-Al_4FeSi_2(rectangular shape),and no eutectic silicon is found due to the special solidification behavior.The age hardening curves reveal two peaks.The uniform ultimate tensile strength(UTS)and the elongation of the peak-aged Al-Si-Fe-Cu-Mg alloy are 468.3 MPa,0.61% at 298 Kand 267.4MPa,6.42% at 573 K,respectively.The fracture surfaces display brittle fracture morphology at 298 K,whereas it varies to mixture of brittle and ductile failure with increasing the temperature.展开更多
Five samples of chemically desposited Ni-P amorphous alloys were prepared and inves- tigated.In these amorphous alloys there are Ni-P atom groups in which phosphorus and nickel are connected with strong interaction.Ni...Five samples of chemically desposited Ni-P amorphous alloys were prepared and inves- tigated.In these amorphous alloys there are Ni-P atom groups in which phosphorus and nickel are connected with strong interaction.Nickel atoms and Ni-P groups are deposited in a random manner on the surface of matrix and a quasilayer structure is formed.The spacing between two layers in alloys resembles that in(111)plane in the nickel crystal.Therefore there is a peak at the same position of 2θ=44.4° as that of the(111)reflection of crystalline nickel in the X-ray powder diffraction pat- tern of alloys.However,the dimension of Ni-P groups is different from that of a nickel atom and the atomic arrangement in the layer is in disorder.These result in the space change and there is a distribution of spacing around the average.As a consequence of distribution of spacings,the peak at 2θ=44.4° is broadened and enhanced as the amount of P increases.展开更多
文摘Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.
文摘The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
基金financially supported by the Russian Science Foundation(No.16-19-10625)
文摘Carbon nanotube (CNT) arrays were fabricated on Ct-Me-N-(O) alloys with content of Ct in the range of 6-40 at.% by chemical vapour deposition. The Ct was a catalytic metal from the group of the following elements: Ni, Co, Fe, Pd, while Me was a transition metal from the group of IV-VII of the periodic table (where Me=Ti, V, Cr, Zr, Nb, Mo, Ta, W, Re). Carbon nanotubes were found to grow efficiently on the alloy surface with its composition containing Ti, V, Cr, Zr, Hf, Nb or Ta. The growth of CNTs was not observed when the alloy contained W or Re. Additions of oxygen and nitrogen in the alloy facilitated the formation of oxynitrides and catalyst extrusion on the alloy surface. Replacement of the metals in alloy composition affected the diameter of the resulting CNTs. The obtained results showed that the alloy films of varying thickness (10-500 nm) may be used for the CNTs growth. The resulting CNT material was highly homogenous and its synthesis reproducible.
基金the financing support of the budget(022/11-B)of the G.V.Kurdyumov Institute for Metal Physics of NAS of Ukrainethe budget(1.6.3.13/33) of the E.O.Paton Electric Welding Institute of NAS of Ukraine
文摘The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.
基金Item Sponsored by National Natural Science Foundation of China(51375110)Scientific Research Foundation of Inner Mongolia University of Technology of China(ZD201405)
文摘Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary Si particles with average size of less than 5μm,α-Al,Al_2CuMg,β-Al_5FeSi andδ-Al_4FeSi_2(rectangular shape),and no eutectic silicon is found due to the special solidification behavior.The age hardening curves reveal two peaks.The uniform ultimate tensile strength(UTS)and the elongation of the peak-aged Al-Si-Fe-Cu-Mg alloy are 468.3 MPa,0.61% at 298 Kand 267.4MPa,6.42% at 573 K,respectively.The fracture surfaces display brittle fracture morphology at 298 K,whereas it varies to mixture of brittle and ductile failure with increasing the temperature.
基金This research was supported by the National Natural Science Foundation of China.
文摘Five samples of chemically desposited Ni-P amorphous alloys were prepared and inves- tigated.In these amorphous alloys there are Ni-P atom groups in which phosphorus and nickel are connected with strong interaction.Nickel atoms and Ni-P groups are deposited in a random manner on the surface of matrix and a quasilayer structure is formed.The spacing between two layers in alloys resembles that in(111)plane in the nickel crystal.Therefore there is a peak at the same position of 2θ=44.4° as that of the(111)reflection of crystalline nickel in the X-ray powder diffraction pat- tern of alloys.However,the dimension of Ni-P groups is different from that of a nickel atom and the atomic arrangement in the layer is in disorder.These result in the space change and there is a distribution of spacing around the average.As a consequence of distribution of spacings,the peak at 2θ=44.4° is broadened and enhanced as the amount of P increases.