Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style...Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.展开更多
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an...A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.展开更多
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influenc...Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.展开更多
Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big ...Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.展开更多
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper...To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.展开更多
During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy stee...During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M^3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys.The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microalloying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
The iron rust phases formed on low alloy steels containing different quantities of Cr element have been characterized using EPMA, Raman spectroscopy, TEM, optical microscopy etc. The ion selective properties of synthe...The iron rust phases formed on low alloy steels containing different quantities of Cr element have been characterized using EPMA, Raman spectroscopy, TEM, optical microscopy etc. The ion selective properties of synthesized rust films with the same phase constituent as the atmospheric corrosion products were investigated using self-made apparatus. The results showed that corrosion loss of steels exposed in marine atmosphere decreased rapidly as the Cr content of the steel was increased. Cr-containing steels were covered by a uniform compacted rust layer composed of fine particles with an average diameter of several nanometers. Inner rust layer of Cr-containing steel (2 mass fraction) was composed of a-CrxFe1-xOOH, with Cr content of about 5 mass fraction. Such rust layer showed cation selective property, and could depress the penetration of Cl- to contact substrate steel directly.展开更多
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen...The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.展开更多
Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation re...Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.展开更多
The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2...The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.展开更多
An alloy steel pattern recognition expert system,ASPRES,has been established for the purpose of computer aided optimal design of alloy steel in compositions and process pa- rameters,Pattern recognition techniques are ...An alloy steel pattern recognition expert system,ASPRES,has been established for the purpose of computer aided optimal design of alloy steel in compositions and process pa- rameters,Pattern recognition techniques are used to abstract inner relationship between mechanical properties and process variables.The ASPRES uses 2-dimensional graph as visual knowledge to represent domain expertise of specific object.Forward and back- ward chaining can be utilized by researcher in predicting sample performances or giving helpful suggestions about the chemical compositions and process parameters according to desired properties.展开更多
Dynamic mechanical performances of 30CrMnSiNi2A alloy steel under high pressure of 1-15 GPa are studied with a one stage light gas gun. With the particle velocity ranging from 150 m/s to 300 m/s, the Hugoniot curve ...Dynamic mechanical performances of 30CrMnSiNi2A alloy steel under high pressure of 1-15 GPa are studied with a one stage light gas gun. With the particle velocity ranging from 150 m/s to 300 m/s, the Hugoniot curve of 30CrMnSiNi2A alloy steel is analyzed and obtained based on the experimental data and the parameters of equation of state are obtained by calculating. The Grüneisen equation of state can be determined through these parameters.展开更多
Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% N...Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.展开更多
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves...The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.展开更多
The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austeni...The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.展开更多
By using electrochemical and weight loss methods, the effect of MoO42-on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature. The results show that ...By using electrochemical and weight loss methods, the effect of MoO42-on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature. The results show that MoO42 , being an anodic inhibitor, would form a passive film rapidly and impede both anodic and cathodic reactions. Moreover, Na2MoO4 effectively prevents corrosion in 55%LiBr+0.07 mol/L LiOH solution when its concentration is higher than 200 mg/L. Some elements of alloy, such as chromium and nickel, may cause the widening of passive potential region and the decrease of passive density, which indicates that the corrosion resistance increases. AES analysis shows that molybdenum participates in forming a protection film. The synergistic effect between chromium and molybdenum induces Cr-steel to be in passive state in lower Na2MoO4 concentration.展开更多
On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component ...On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.展开更多
The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and w...The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and wear tester. SEM and X-ray diffraction were employed toanalyze the microphotograph of the worn surface and the phase of worn pieces in order to reveal thewear mechanisms of MoSi_2 material. The results show that MoSi_2/CrWMn steel friction pair has gooddry friction and wear properties under the load of 80 N, where the friction coefficient is 0.255 andthe wear rate of MoSi_2 is only 14.72 mg centre dot km^(-1). But under the load of 150 N, it isMoSi_2/45 tempered steel friction pair that has good tribological properties, where the frictioncoefficient is 0.278 and the wear rate of MoSi_2 is only 10.6 mg centre dot km^(-1). The main wearmechanism of MoSi_2 under low loads is brittle fracture. With the increase of load, the main wearmechanism of MoSi_2 against 45 quenched steel or CrWMn steel is adhesive wear. However, the wearmechanism of MoSi_2 against 45 tempered steel is changed from oxidation-fatigue wear to adhesivewear.展开更多
Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperatu...Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperature determined by the small punch test is much lower than that determined by the standard Charpy test. There is some irradiation-induced embrittlement effect after the steel is irradiated for 46 days with a neutron dose rate of 1.05×10^18dpa/s (displacement per atom per second).展开更多
文摘Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.
基金financially supported by the National Key R&D Program of China(No.2017YFB1103200)the Independent Innovation Research Fund Project of Huazhong University of Science and Technology(No.2018KFYXMPT002)。
文摘A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.
基金the support by the National Natural Science Foundation of China(Nos.51208098 and 51678144)the National Basic Research Program of China(No.2015CB655100)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20161420)Industry-University Research Cooperative Innovation Fund of Jiangsu Province(No.BY2013091)
文摘Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.
基金financially supported by the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2022 B H003)。
文摘Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.
基金supported by the National Science and Technology Major Project of China (Grant No.2011ZX05056)
文摘To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.
基金financially supported by the National Natural Science Foundation of China (No. 51701012)the National Basic Research Program of China (973 Program: No. 2010CB630801)the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-004A1)
文摘During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M^3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys.The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microalloying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金This research were supported by the Science and Technology Society of Shanghai, China Appreciation is expressed to Y.F.Zhu of the Instrumental Analysis Center of Shanghai JiaoTong University for the use of Raman Spectroscope.
文摘The iron rust phases formed on low alloy steels containing different quantities of Cr element have been characterized using EPMA, Raman spectroscopy, TEM, optical microscopy etc. The ion selective properties of synthesized rust films with the same phase constituent as the atmospheric corrosion products were investigated using self-made apparatus. The results showed that corrosion loss of steels exposed in marine atmosphere decreased rapidly as the Cr content of the steel was increased. Cr-containing steels were covered by a uniform compacted rust layer composed of fine particles with an average diameter of several nanometers. Inner rust layer of Cr-containing steel (2 mass fraction) was composed of a-CrxFe1-xOOH, with Cr content of about 5 mass fraction. Such rust layer showed cation selective property, and could depress the penetration of Cl- to contact substrate steel directly.
文摘The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.
文摘Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.
文摘The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.
文摘An alloy steel pattern recognition expert system,ASPRES,has been established for the purpose of computer aided optimal design of alloy steel in compositions and process pa- rameters,Pattern recognition techniques are used to abstract inner relationship between mechanical properties and process variables.The ASPRES uses 2-dimensional graph as visual knowledge to represent domain expertise of specific object.Forward and back- ward chaining can be utilized by researcher in predicting sample performances or giving helpful suggestions about the chemical compositions and process parameters according to desired properties.
文摘Dynamic mechanical performances of 30CrMnSiNi2A alloy steel under high pressure of 1-15 GPa are studied with a one stage light gas gun. With the particle velocity ranging from 150 m/s to 300 m/s, the Hugoniot curve of 30CrMnSiNi2A alloy steel is analyzed and obtained based on the experimental data and the parameters of equation of state are obtained by calculating. The Grüneisen equation of state can be determined through these parameters.
基金supported by the Major State Basic Research and Development Program of China (No.2004CB619102)
文摘Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.
文摘The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.
文摘The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.
文摘By using electrochemical and weight loss methods, the effect of MoO42-on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature. The results show that MoO42 , being an anodic inhibitor, would form a passive film rapidly and impede both anodic and cathodic reactions. Moreover, Na2MoO4 effectively prevents corrosion in 55%LiBr+0.07 mol/L LiOH solution when its concentration is higher than 200 mg/L. Some elements of alloy, such as chromium and nickel, may cause the widening of passive potential region and the decrease of passive density, which indicates that the corrosion resistance increases. AES analysis shows that molybdenum participates in forming a protection film. The synergistic effect between chromium and molybdenum induces Cr-steel to be in passive state in lower Na2MoO4 concentration.
文摘On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.
文摘The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and wear tester. SEM and X-ray diffraction were employed toanalyze the microphotograph of the worn surface and the phase of worn pieces in order to reveal thewear mechanisms of MoSi_2 material. The results show that MoSi_2/CrWMn steel friction pair has gooddry friction and wear properties under the load of 80 N, where the friction coefficient is 0.255 andthe wear rate of MoSi_2 is only 14.72 mg centre dot km^(-1). But under the load of 150 N, it isMoSi_2/45 tempered steel friction pair that has good tribological properties, where the frictioncoefficient is 0.278 and the wear rate of MoSi_2 is only 10.6 mg centre dot km^(-1). The main wearmechanism of MoSi_2 under low loads is brittle fracture. With the increase of load, the main wearmechanism of MoSi_2 against 45 quenched steel or CrWMn steel is adhesive wear. However, the wearmechanism of MoSi_2 against 45 tempered steel is changed from oxidation-fatigue wear to adhesivewear.
文摘Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperature determined by the small punch test is much lower than that determined by the standard Charpy test. There is some irradiation-induced embrittlement effect after the steel is irradiated for 46 days with a neutron dose rate of 1.05×10^18dpa/s (displacement per atom per second).