A mathematical model has been developed to analyze the flow patterns and subsurface trajectories of spherical shaped particles (alloy additions) in gas stirring ladles. First, a numerical method to solve fluid flow ...A mathematical model has been developed to analyze the flow patterns and subsurface trajectories of spherical shaped particles (alloy additions) in gas stirring ladles. First, a numerical method to solve fluid flow problems in conjunction with a curvilinear coordinate system is proposed. The internal boundary in flow field, which must be designated in the cylindrical polar coordinate system, can be avoided by using body- fitted coordinate system (BFC). Consequently, computed flow of molten steel and paths of alloying additions are able to cross smoothly the geometric centerline of cylindrical vessel. Second, motion of particles is calculated in the three-dimensional coordinate system, the modification of parameters, such as the drag coefficient and density in the gas plume region, is examined. When the density of sphere is closer and closer to that of fluid, the path of motion is longer and longer. If the plug is moved off-centered to the half of radius, the path of sphere is prolonged, and the sphere may go through the geometric centerline of vessel, reach the deeper region. The immersed depths increase with increasing entry velocities.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ...The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.展开更多
The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based...The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based on the low-cost alloy composition design,the corro-sion behavior of commercial Mg-3Al-1Zn(AZ31)alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy,hydrogen evolution,electrochemical measurements,and corrosion morphology analysis.Results revealed that the potential differ-ence of Al_(2)Ca/α-Mg and Mg_(2)Sn/α-Mg was(230±19)mV and(80±6)mV,respectively,much lower than that of Al_(8)Mn_(5)/α-Mg(430±31)mV in AZ31 alloy,which illustrated that AZ31-0.2Sn alloy performed the best corrosion resistance,followed by AZ31-0.2Ca,while AZ31 al-loy exhibited the worst corrosion resistance.Moreover,Sn dissolved into matrix obviously increased the potential ofα-Mg and participated in the formation of dense SnO_(2) film at the interface of matrix,while Ca element was enriched in the corrosion product layer,resulting in the cor-rosion product layer of AZ31-0.2Ca/Sn alloys more compact,stable,and protective than AZ31 alloy.Therefore,AZ31 alloy bearing 0.2wt%Ca or Sn element exhibited excellent balanced properties,which is potential to be applied in commercial more comprehensively.展开更多
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper...The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.展开更多
The influences of rare earth elements(cerium and lanthanum) on the microstructure and phases of Al-3.0 wt%Mg alloys used for electromagnetic shielding wire were characterized by scanning electron microscopy(SEM), ...The influences of rare earth elements(cerium and lanthanum) on the microstructure and phases of Al-3.0 wt%Mg alloys used for electromagnetic shielding wire were characterized by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The mechanical properties and electrical resistivity were also investigated. The results indicated that a certain content of rare earth could improve the purification of the aluminum molten, enhance the strength, and reduce the electrical resistivity of Al-3.0 wt%Mg alloys. The strength reached the top value when RE content was 0.3 wt% while the alloy with 0.2 wt% RE addition had the smallest electrical resistivity. The elongation varied little when RE addition was no more than 0.2 wt%. But the excessive addition of rare earth would be harmful to the microstructure and properties of Al-3.0 wt%Mg alloys.展开更多
Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addit...Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.展开更多
The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented...The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.展开更多
The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical mi...The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.展开更多
The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by fiel...The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, differential scanning calorimetry and electrochemical and immersion tests in NaCl solution. It was observed that the microstructure, shape memory effect and corrosion characteristics are highly sensitive to the composition variations. It was found that the highest strain recovery was with 0.7% addition of Mn or Ti. This may be attributed to the presence of precipitation with a high volume fraction and the grain refinement. The electrochemical test showed that the formation of oxide layers in both Cu-Al-Ni-Mn and Cu-Al-Ni-Ti shape memory alloys(SMAs) provided good passivation which enhanced the corrosion resistance of the alloys. Immersion test showed that in Cu-Al-Ni-Mn SMAs, pitting corrosion occurred through feebleness in the oxide layer. A corrosion product adjacent to the pits was rich in Al/Mn oxide and depleted in Cu while inside of the pit it was rich in Cu. In Cu-Al-Ni-Ti SMAs, localized corrosion occurred on the surface of the specimens and dealuminization attack was also observed in the matrix.展开更多
A novel semisolid continuous Micro Fused-Casting additive manufacturing technology for producing a ZL101 alloy strip was developed, Micro Fused-Casting means that the semisolid metal slurry was pressed out from the ou...A novel semisolid continuous Micro Fused-Casting additive manufacturing technology for producing a ZL101 alloy strip was developed, Micro Fused-Casting means that the semisolid metal slurry was pressed out from the outlet of bottom of crucible to the movable plate. The degree of sub-cooling was easily provided by movement of substrate in the micro fused-casting area. Under the aid of 3 D manufacturing software, the ZL101 alloy strip was solidified and formed layer by layer. The microstructure and properties of ZL101 semisolid slurry were improved by the cooling conditions. The results showed that the ZL101 alloy strip samples fabricated by Micro Fused-Casting had uniform structures and good performances with the substrate movement speed at 20 mm/s and the temperature at 590 ℃, the ultimate tensile strength and elongation of the ZL101 alloy strip reached 242.59 MPa and 7.71%, while the average Vickers hardness was 82.55 HV.展开更多
Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) ...Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.展开更多
In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composi...In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composition of(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15, 20) were prepared by melt spinning technology. The effects of Nd content on the structures and hydrogen storage kinetics of the alloys were investigated. The characterization by X-ray diffraction(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM) reveals that all the as-cast alloys hold multiphase structures, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41, and Nd Ni, whose amounts clearly grow with increasing Nd content. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a mixed structure of nanocrystalline and amorphous structure and the amorphization degree of the alloys visibly increases with the rising of the Nd content, suggesting that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The measurement of the hydrogen storage kinetics indicates that the addition of Nd significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode fi rst mount up and then go down with the growing of Nd content.展开更多
The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath comp...The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath composition, temperature and pH value on the deposition rate and the plating solution stability. Moreover, the tribological properties of nano-Cu lubricating additives and electroless deposited Ni-W-P coating as well as their synergistic effect are researched using ring-block abrasion testing machine and energy dispersive spectrometer. Research results show that Ni-W-P alloy coating and nano-Cu lubricating additive have excellent synergistic effect, e g, the wear resistance of Ni-W-P alloy coating (with heat treatment and the oil with nano-Cu additives) has increased hundreds times than 45 steel as the metal substrate with the basic oil, and zero wear is achieved, which breaks through the bottleneck of previous separate research of the above-mentioned two aspects.展开更多
The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been...The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of porosity occurring at different Sr levels and pressure parameters. The results indicate that an increase in the filling pressure induces lower heat dissipation of the liquid close to the die/core surfaces, with the formation of slightly greater dendrite arms and coarser eutectic Si particles. On the other hand, the increase in the Sr level leads to finer microstructural scale and eutectic Si. The analysed variables, within the experimental conditions, do not affect the morphology of eutectic Si particles. Higher applied pressure and Sr content generate castings with lower amount of porosiW. However, as the filling pressure increases the flow of metal inside the die cavity is more turbulent, leading to the formation of oxide films and cold shots. In the analysed range of experimental conditions, the design of experiment methodology and the analysis of variance have been used to develop statistical models that accurately predict the average size of secondary dendrite arm spacing and the amount of porosity in the low-pressure die cast AISiTMg0.3 alloy.展开更多
Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A br...Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.展开更多
Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffract...Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.展开更多
文摘A mathematical model has been developed to analyze the flow patterns and subsurface trajectories of spherical shaped particles (alloy additions) in gas stirring ladles. First, a numerical method to solve fluid flow problems in conjunction with a curvilinear coordinate system is proposed. The internal boundary in flow field, which must be designated in the cylindrical polar coordinate system, can be avoided by using body- fitted coordinate system (BFC). Consequently, computed flow of molten steel and paths of alloying additions are able to cross smoothly the geometric centerline of cylindrical vessel. Second, motion of particles is calculated in the three-dimensional coordinate system, the modification of parameters, such as the drag coefficient and density in the gas plume region, is examined. When the density of sphere is closer and closer to that of fluid, the path of motion is longer and longer. If the plug is moved off-centered to the half of radius, the path of sphere is prolonged, and the sphere may go through the geometric centerline of vessel, reach the deeper region. The immersed depths increase with increasing entry velocities.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
基金supported by General Research Funds (Projects#115108 and#114809) from the Research Grants Council of the Hong Kong SAR,China
文摘The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.
基金This work is financially supported by the Fundamental Research Funds for the Central Universities,China(Nos.2302017FRF-IC-17-001,2302018FRF-IC-18-004,232019 FRF-IC-19-018,and 2302020FRF-IC-20-10)the China Postdoctoral Science Foundation(No.2021M700378).
文摘The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based on the low-cost alloy composition design,the corro-sion behavior of commercial Mg-3Al-1Zn(AZ31)alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy,hydrogen evolution,electrochemical measurements,and corrosion morphology analysis.Results revealed that the potential differ-ence of Al_(2)Ca/α-Mg and Mg_(2)Sn/α-Mg was(230±19)mV and(80±6)mV,respectively,much lower than that of Al_(8)Mn_(5)/α-Mg(430±31)mV in AZ31 alloy,which illustrated that AZ31-0.2Sn alloy performed the best corrosion resistance,followed by AZ31-0.2Ca,while AZ31 al-loy exhibited the worst corrosion resistance.Moreover,Sn dissolved into matrix obviously increased the potential ofα-Mg and participated in the formation of dense SnO_(2) film at the interface of matrix,while Ca element was enriched in the corrosion product layer,resulting in the cor-rosion product layer of AZ31-0.2Ca/Sn alloys more compact,stable,and protective than AZ31 alloy.Therefore,AZ31 alloy bearing 0.2wt%Ca or Sn element exhibited excellent balanced properties,which is potential to be applied in commercial more comprehensively.
基金Shanxi Province Natural Science FOundation State Key Laboratory of Solidilication Processing.
文摘The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.
基金Funded by the National Natural Science Foundation of China(No.51379070)the Fundamental Research Funds for the Central Universities(No.2017B40314)
文摘The influences of rare earth elements(cerium and lanthanum) on the microstructure and phases of Al-3.0 wt%Mg alloys used for electromagnetic shielding wire were characterized by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The mechanical properties and electrical resistivity were also investigated. The results indicated that a certain content of rare earth could improve the purification of the aluminum molten, enhance the strength, and reduce the electrical resistivity of Al-3.0 wt%Mg alloys. The strength reached the top value when RE content was 0.3 wt% while the alloy with 0.2 wt% RE addition had the smallest electrical resistivity. The elongation varied little when RE addition was no more than 0.2 wt%. But the excessive addition of rare earth would be harmful to the microstructure and properties of Al-3.0 wt%Mg alloys.
基金financially supported by the National Key Technology R&D Program(2015BAG12B01)the National Natural Science Foundation of China(11672251)the State Key Lab of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2015-10)
文摘Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.
文摘The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.
文摘The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.
基金the Malaysian Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for providing the financial support and facilities for this research, under Grant No. R.J130000.7824.4F150
文摘The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, differential scanning calorimetry and electrochemical and immersion tests in NaCl solution. It was observed that the microstructure, shape memory effect and corrosion characteristics are highly sensitive to the composition variations. It was found that the highest strain recovery was with 0.7% addition of Mn or Ti. This may be attributed to the presence of precipitation with a high volume fraction and the grain refinement. The electrochemical test showed that the formation of oxide layers in both Cu-Al-Ni-Mn and Cu-Al-Ni-Ti shape memory alloys(SMAs) provided good passivation which enhanced the corrosion resistance of the alloys. Immersion test showed that in Cu-Al-Ni-Mn SMAs, pitting corrosion occurred through feebleness in the oxide layer. A corrosion product adjacent to the pits was rich in Al/Mn oxide and depleted in Cu while inside of the pit it was rich in Cu. In Cu-Al-Ni-Ti SMAs, localized corrosion occurred on the surface of the specimens and dealuminization attack was also observed in the matrix.
基金Funded by the National Natural Science Foundation of China(No.51341009)
文摘A novel semisolid continuous Micro Fused-Casting additive manufacturing technology for producing a ZL101 alloy strip was developed, Micro Fused-Casting means that the semisolid metal slurry was pressed out from the outlet of bottom of crucible to the movable plate. The degree of sub-cooling was easily provided by movement of substrate in the micro fused-casting area. Under the aid of 3 D manufacturing software, the ZL101 alloy strip was solidified and formed layer by layer. The microstructure and properties of ZL101 semisolid slurry were improved by the cooling conditions. The results showed that the ZL101 alloy strip samples fabricated by Micro Fused-Casting had uniform structures and good performances with the substrate movement speed at 20 mm/s and the temperature at 590 ℃, the ultimate tensile strength and elongation of the ZL101 alloy strip reached 242.59 MPa and 7.71%, while the average Vickers hardness was 82.55 HV.
基金Funded by National Natural Science Foundation of China(No.51371039)Zhejiang Provincial Natural Science Foundation of China(No.LGG18E020004)+1 种基金Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical EngineeringScience and Technology Project of Zhejiang Province(No.2015C37037)
文摘Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.
基金Funded by the National Natural Science Foundations of China(Nos.51161015 and 51371094)
文摘In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composition of(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15, 20) were prepared by melt spinning technology. The effects of Nd content on the structures and hydrogen storage kinetics of the alloys were investigated. The characterization by X-ray diffraction(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM) reveals that all the as-cast alloys hold multiphase structures, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41, and Nd Ni, whose amounts clearly grow with increasing Nd content. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a mixed structure of nanocrystalline and amorphous structure and the amorphization degree of the alloys visibly increases with the rising of the Nd content, suggesting that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The measurement of the hydrogen storage kinetics indicates that the addition of Nd significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode fi rst mount up and then go down with the growing of Nd content.
文摘The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath composition, temperature and pH value on the deposition rate and the plating solution stability. Moreover, the tribological properties of nano-Cu lubricating additives and electroless deposited Ni-W-P coating as well as their synergistic effect are researched using ring-block abrasion testing machine and energy dispersive spectrometer. Research results show that Ni-W-P alloy coating and nano-Cu lubricating additive have excellent synergistic effect, e g, the wear resistance of Ni-W-P alloy coating (with heat treatment and the oil with nano-Cu additives) has increased hundreds times than 45 steel as the metal substrate with the basic oil, and zero wear is achieved, which breaks through the bottleneck of previous separate research of the above-mentioned two aspects.
文摘The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of porosity occurring at different Sr levels and pressure parameters. The results indicate that an increase in the filling pressure induces lower heat dissipation of the liquid close to the die/core surfaces, with the formation of slightly greater dendrite arms and coarser eutectic Si particles. On the other hand, the increase in the Sr level leads to finer microstructural scale and eutectic Si. The analysed variables, within the experimental conditions, do not affect the morphology of eutectic Si particles. Higher applied pressure and Sr content generate castings with lower amount of porosiW. However, as the filling pressure increases the flow of metal inside the die cavity is more turbulent, leading to the formation of oxide films and cold shots. In the analysed range of experimental conditions, the design of experiment methodology and the analysis of variance have been used to develop statistical models that accurately predict the average size of secondary dendrite arm spacing and the amount of porosity in the low-pressure die cast AISiTMg0.3 alloy.
基金financially supported by the National High Technology Research and Development Program of China (No.2015AA033702)the National Basic Research Program of China (Nos.2012CB619103 and 2012CB933901)the National Natural Science Foundation of China (Nos.51271180 and 51271182)
文摘Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.
基金financially supported by the National Natural Science Foundation of China (Nos. 51161015 and 51371094)Natural Science Foundation of Inner Mongolia, China (No. 2011ZD10)
文摘Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.