The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by ...The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.展开更多
We first prove that the Cauchy problem of the Kawahara equation, δtu + uδxu +βδx^3u+γδx^5u = 0, is locally solvable if the initial data belong to H^r(R) and r〉 r≥-7/5, thus improving the known local well-...We first prove that the Cauchy problem of the Kawahara equation, δtu + uδxu +βδx^3u+γδx^5u = 0, is locally solvable if the initial data belong to H^r(R) and r〉 r≥-7/5, thus improving the known local well-posedness result of this equation. Next we use this local result and the method of "almost conservation law" to prove that global solutions exist if the initial data belong to H^r(R) and r〉-1/2.展开更多
基金supported by NSFC (10771074)NSFC-NSAF(10976026)+1 种基金Yang was partially supported by NSFC (10801055 10901057)
文摘The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.
基金This work is partially supported by the China National Natural Science Foundation(No.10471157)the second author is also supported in part by the Advanced Research Center of the Sun Yat-Sen University
文摘We first prove that the Cauchy problem of the Kawahara equation, δtu + uδxu +βδx^3u+γδx^5u = 0, is locally solvable if the initial data belong to H^r(R) and r〉 r≥-7/5, thus improving the known local well-posedness result of this equation. Next we use this local result and the method of "almost conservation law" to prove that global solutions exist if the initial data belong to H^r(R) and r〉-1/2.