In this paper, we first study the properties of asymptotically almost periodic functions in probability and then prove the existence of almost periodic solutions in probability to some differential equations with rand...In this paper, we first study the properties of asymptotically almost periodic functions in probability and then prove the existence of almost periodic solutions in probability to some differential equations with random terms.展开更多
In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal dir...In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.展开更多
In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equat...In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.展开更多
In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model...In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model for the dynamics of gas absorption,展开更多
On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract diff...On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract differential equation ( u″(t)+A 1u′(t)+A 0u(t)=0, t≥0 ) is strongly well posed, the necessary conditions for their solutions to be pseudo almost periodic are derived.展开更多
For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if perio...For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.展开更多
The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument b...In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument by means of introducing the notion of pseudo almost periodic vector sequences.展开更多
In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.
基金partially supported by NNSF of China (No.11171191 and 11201266)NSF of Shandong Province (No.ZR2010AL011 and ZR2012AL01)
文摘In this paper, we first study the properties of asymptotically almost periodic functions in probability and then prove the existence of almost periodic solutions in probability to some differential equations with random terms.
基金partially the National Key R&D Program of China(2021YFA1002100)the NSFC(12171493,11701586)+2 种基金the FDCT(0091/2018/A3)the Guangdong Special Support Program(8-2015)the Key Project of NSF of Guangdong Province(2021A1515010296)。
文摘In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.
文摘In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.
基金The NSF(001084)of Liaoning Provincethe Science Foundation of OUC and the NSF(10371010)of China
文摘In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model for the dynamics of gas absorption,
文摘On the assumption that the Cauchy problem for incomplete second order abstract differential equation (u″(t)=Au(t), -∞ <t <∞) is well posed and the Cauchy problem for complete second order abstract differential equation ( u″(t)+A 1u′(t)+A 0u(t)=0, t≥0 ) is strongly well posed, the necessary conditions for their solutions to be pseudo almost periodic are derived.
文摘For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.
文摘The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
基金the Science Foundation of Fushun Petroleum Institute and the Science Foundation of Liaoning Province.
文摘In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument by means of introducing the notion of pseudo almost periodic vector sequences.
基金Supported by the Science Foundation of Fushun Petroleum Institute
文摘In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.