Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are...Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.展开更多
Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a...Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
In this study, the sufficient condition of almost sure stability of twodimensional oscillating systems under parametric excitations is investigated. The systems considered are assumed to be composed of two weakly coup...In this study, the sufficient condition of almost sure stability of twodimensional oscillating systems under parametric excitations is investigated. The systems considered are assumed to be composed of two weakly coupled subsystems. The driving actions are considered to be stationary stochastic processes satisfying ergodic properties. The properties of quadratic forms are used in conjunction with the bounds for the eigenvalues to obtain, in a closed form, the sufficient condition for the almost sure stability of the systems.展开更多
This paper investigates the problem of almost sure limit theorem for the maximum of quasi-stationary sequence based on the result of Turkman and Walker. We prove an almost sure limit theorem for the maximum of a class...This paper investigates the problem of almost sure limit theorem for the maximum of quasi-stationary sequence based on the result of Turkman and Walker. We prove an almost sure limit theorem for the maximum of a class of quasi-stationary sequence under weak dependence conditions of D (uk, un) and αtm,ln = 0 ((log log n)-(1+ε)).展开更多
Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves t...Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.展开更多
In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linea...In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.展开更多
In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather ar...In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables展开更多
The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable B...The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.展开更多
For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for ...For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for i. d. NA sequences is obtained as a special case.展开更多
We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-...We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.展开更多
Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes a...Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes and improves the previous results.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
文摘Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.
基金Supported by the National Natural Science Foundation of China(11061012)Project Supported by Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning([2011]47)the Guangxi Natural Science Foundation of China(2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.
基金Project supported by the National Science Foundation of USA (No. CMMI0758632)
文摘In this study, the sufficient condition of almost sure stability of twodimensional oscillating systems under parametric excitations is investigated. The systems considered are assumed to be composed of two weakly coupled subsystems. The driving actions are considered to be stationary stochastic processes satisfying ergodic properties. The properties of quadratic forms are used in conjunction with the bounds for the eigenvalues to obtain, in a closed form, the sufficient condition for the almost sure stability of the systems.
基金Project supported by the National Natural Science Foundation of China(11171275)the Natural Science Foundation Project of CQ(cstc2012jjA00029)Liaocheng University Foundation(X09005)
文摘This paper investigates the problem of almost sure limit theorem for the maximum of quasi-stationary sequence based on the result of Turkman and Walker. We prove an almost sure limit theorem for the maximum of a class of quasi-stationary sequence under weak dependence conditions of D (uk, un) and αtm,ln = 0 ((log log n)-(1+ε)).
文摘Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.
基金the National Natural Science Foundation of China (No. 10571036)Tianjin Municipal Education Commission of China(No. 20070405)
文摘In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.
文摘In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables
基金Project supported by the Natural Science Foundation of Yibin University (No. 2011Z03)
文摘The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.
文摘For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for i. d. NA sequences is obtained as a special case.
基金supported by the NationalNatural Science Foundation of China(12001236)the Natural Science Foundation of Guangdong Province(2020A1515110494)。
文摘We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.
基金supported by National Natural Science Foundation of China(11361019).
文摘Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes and improves the previous results.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.