Previous studies have shown that berberine has neuroprotective effects against Alzheimer’s disease,including antagonizing tau phosphorylation,and inhibiting acetylcholinesterase activity and neural cell apoptosis.How...Previous studies have shown that berberine has neuroprotective effects against Alzheimer’s disease,including antagonizing tau phosphorylation,and inhibiting acetylcholinesterase activity and neural cell apoptosis.However,its low bioavailability and adverse reactions with conventional administration limit its clinical application.In this study,we prepared berberine nanoliposomes using liposomes characterized by low toxicity,high entrapment efficiency,and biodegradability,and modified them with lactoferrin.Lactoferrin-modified berberine nanoliposomes had uniform particle size and high entrapment efficiency.We used the lactoferrin-modified berberine nanoliposomes to treat a mouse model of Alzheimer’s disease established by injection of amyloid-beta 1-42 into the lateral ventricle.Lactoferrin-modified berberine nanoliposomes inhibited acetylcholinesterase activity and apoptosis in the hippocampus,reduced tau over-phosphorylation in the cerebral cortex,and improved mouse behavior.These findings suggest that modification with lactoferrin can enhance the neuroprotective effects of berberine nanoliposomes in Alzheimer’s disease.展开更多
Crocetin displays strong antioxidant,anti-inflammatory and anti-depression activity which is promising to relieve symptoms of fatigue.As a carotenoid,crocetin is difficult to dissolve in water and highly unstable agai...Crocetin displays strong antioxidant,anti-inflammatory and anti-depression activity which is promising to relieve symptoms of fatigue.As a carotenoid,crocetin is difficult to dissolve in water and highly unstable against many environmental factors.Nanoliposome is used to encapsulate crocetin to improve its water dispersion.In the present study,the antifatigue activities and potential mechanism of crocetin loaded nanoliposome(CLN)was extensively investigated.The potential antifatigue pathway of CLN was analyzed.Furthermore,impact of CLN on the gut microbiota structure was examined which contributes to its antifatigue functions.CLN significantly increases exhaustive swimming time of fatigue mice,decreases the blood contents of lactic,blood urea nitrogen(BUN)and malondialdehyde(MDA).At the same time,CLN improves the activity of glutathione peroxidase(GSH-Px)and succinate dehydrogenase(SDH)enzyme,attenuates the oxidant stress in mice.CLN activates the adenosine monophosphate-activated kinase(AMPK)/peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α)signaling pathway of fatigue mice,increases the mRNA expression of ATP synthase.It also increases mRNA expression of mitochondrial transcription factor A(TFAM)which promotes mitochondrial biogenesis.Additionally,CLN ameliorates the gut microbiota structure by increasing the abundance of genus such as Lactobacillus in fatigue mice.In summary,CLN exerts strong anti-fatigue properties by decreasing the oxidant stress and the contents of harmful metabolites,augmenting the production of ATP,and potentially ameliorating the gut microbiota structure.展开更多
The objective of this study is to compare the targeting ability of activated carbon nanoparticles and nanoliposomes,which are used as carriers for delivering docetaxel(DTX)to the metastatic lymph nodes.In this study,w...The objective of this study is to compare the targeting ability of activated carbon nanoparticles and nanoliposomes,which are used as carriers for delivering docetaxel(DTX)to the metastatic lymph nodes.In this study,we first prepared the DTX-loaded activated carbon nanoparticles(DTX-AC-NPs)by modifying the activated carbon with nitric acid oxidation and absorbing DTX in the concentrated nitro-oxide nanocarbon.We then prepared DTX-loaded nanoliposomes(DTX-LPs)by the proliposome method.The physiochemical properties of DTX-AC-NPs and DTX-LPs were carefully evaluated in vitro.The metastatic lymph node uptake and the injection site retention were investigated by analyzing the DTX concentration in metastatic lymph nodes and injection sites.The result showed that DTX-AC-NPs and DTX-LPs with suitable and stable physicochemical properties could be used for in vivo lymph node targeting studies.DTX-AC-NPs significantly increased DTX-AUC_((0-24)) and prolonged DTX-retention in metastatic lymph nodes compared to DTX-LPs and non-modified activate carbon in vivo.This study demonstrated activated carbon nanoparticles may be potential intralymphatic drug delivery system to preferentially target regional metastatic lymph nodes.展开更多
Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must b...Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects.Therefore,responsive drug-release strategies for inflammation treatment have been explored;however,no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation.Herein,we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes(R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate,RC-NL@DMF)that pre-cisely release encapsulated anti-pyroptotic drugs into pyroptotic cells.The activated key pyroptotic protein,the N-terminal domain of gasdermin E,selectively integrates with the cardiolipin of liposomes,thus forming pores for controlled drug release,pyroptosis,and inflammation inhibition.Therefore,RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice.Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery,suppressing pyroptosis and treating autoimmune inflammatory diseases.展开更多
Nanoliposome is a useful dosage form to increase solubility and absorption of simvastatin(SMV), and consequently improves its therapeutic effects. However, in vivo toxicity of SMV could also be elevated accompanied by...Nanoliposome is a useful dosage form to increase solubility and absorption of simvastatin(SMV), and consequently improves its therapeutic effects. However, in vivo toxicity of SMV could also be elevated accompanied by the absorption enhancement, which is a decisive factor for the clinical application of SMV nanoliposome(SMV-Lipo), but has not been studied systematically and reported so far. In this study, organ toxicity of SMV-Lipo was evaluated in mice in the presence and absence of isoproterenol and compared to those of free SMV. Results demonstrated that compared to free SMV, the SMV-Lipo administrated at an equal dose of 25 mg/kg/d led to severe myocardiotoxicity, hepatotoxicity at baseline and more pronounced liver injury with elevation of alanine aminotransferase. In addition, muscular adverse effect was also observed in SMV-Lipo treated group but not in SMV group. Pharmacokinetic studies revealed that compared to free SMV, the SMV-Lipo administration significantly improved the plasma SMV concentration, and the oral bioavailability was 6.5 times of free SMV. Notably, when the dosage of free SMV increased to 50 mg/kg/d, yielding the comparable plasma concentration as SMV-Lipo given at 25 mg/kg/d, the myocardiotoxicity was observed in free SMV treated mice as well, which further confirmed that the enhanced absorption of SMV by the nanoliposomal formulation resulted in more severe myocardiotoxicity than the equal dose of free SMV.展开更多
Catechin(CTC)is a phenolic active compound with multiple biological activities.However,CTC is relatively unstable,easily oxidized and poorly soluble in water,showing limited bioavailability,which is a challenge for it...Catechin(CTC)is a phenolic active compound with multiple biological activities.However,CTC is relatively unstable,easily oxidized and poorly soluble in water,showing limited bioavailability,which is a challenge for its application in the pharmaceutical and food industry.The purpose of this study was to promote the controlled release of CTC in the simulated gastrointestinal(GI)tract by using biopolymer-coupled nanoliposomes(NL).The nanoliposome was characterized by multifunctional polycrystalline X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR).The results exhibited that the size of the nanocarrier was in the range of 87-178 nm,the encapsulation efficiency of CTC was 93.5%,and the combination of chitosan(CS)and alginate(ALG)was better than that of monopolymer.In vitro digestion studies showed that ALG-CS-NL significantly controlled the release of CTC by the diffusion,dissolution,and slow release mechanism and retained about 33%-37%of CTC under the GI condition.These results demonstrated that ALG-CS-NL could increase the stability of CTC,which may be important for the development of nutraceutical-enriched functional foods.展开更多
OBJECTIVE:To prepare aloe-emodin solid dispersion(AE-SD)and determine the metabolic process of AE and AE-SD in vivo.METHODS:AE-SD was prepared via solvent evaporation or solvent melting using PEG-6000 and PVP-K30 as c...OBJECTIVE:To prepare aloe-emodin solid dispersion(AE-SD)and determine the metabolic process of AE and AE-SD in vivo.METHODS:AE-SD was prepared via solvent evaporation or solvent melting using PEG-6000 and PVP-K30 as carriers.Thermogravimetric analysis,X-ray diffraction spectroscopy,differential scanning calorimetry,Fourier transform infrared spectroscopy and scanning electron microscopy were used to identify the physical state of AESD.Optimal prescriptions were screened via the dissolution degree determination method.Using Phoenix software,AE suspension and AE-SD were subjected to a pharmacokinetic comparison study analyzing the alteration of behavior in vivo after AE was prepared as a solid dispersion.Acute toxicity was assessed in mice,and the physiological toxicity was used as the determination criterion for toxicity.RESULTS:AE-SD showed that AE existed in the carrier in an amorphous state.Compared with polyethylene glycol,polyvinylpyrrolidone(PVP)inhibited AE crystallization,causing the drug to transform from a dense crystalline state to an amorphous form and increasing the degree of drug dispersion.Therefore,it was more suitable as a carrier material for AE-SD.The addition of poloxamer(POL)was more beneficial to the stability of solid dispersions and could reduce the amount of PVP.The dissolution test confirmed that the optimal ratio of AE to the composite vector AE-PVP-POL was 1:2:2,and its dissolution effect was also optimal.Based on the pharmacokinetic comparison,the drug absorption was faster and quickly reached the peak of blood drug concentration in AE-SD compared to AE,the Cmax of AE-SD was greater than that of AE,and t1/2 and mean residence time of AE-SD were less than AE.The results showed that the drug metabolism in AE-SD was better,and the residence time was shorter.The toxicology study showed that both AE and AE-SD had no toxicity.CONCLUSION:This paper established that the solubility of the drug could be increased after preparing a solid dispersion,as demonstrated by in vitro dissolution experiments.In vivo pharmacokinetics studies confirmed that AE-SD could improve the bioavailability of AE in vivo,providing a new concept for the research and development of AE preparations.展开更多
Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and sunscreen.However,the demand for these gel-based products has led to a surplus production ...Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and sunscreen.However,the demand for these gel-based products has led to a surplus production of Aloe vera processing waste.An Aloe vera gel processing facility could generate up to 4000 kg of Aloe vera waste per month.Currently the Aloe vera waste is being disposed to the landfill or used as fertilizer.A sustainable management system for the Aloe vera processing waste should be considered,due to the negative societal and environmental impacts of the currents waste disposal methods.Therefore,this review focuses on various approaches that can be used to valorize Aloe vera waste into value-added products,such as animal and aquaculture feeds,biosorbents,biofuel and natural polymers.Researchers have reported Aloe vera waste for environmental applications biosorbents used for wastewater treatment of various pollutants.Several studies have also reported on the valorization of Aloe vera waste for production of biofuels such as bioethanol,mixed alcohol fuels,biogas and syngas.Aloe vera waste could also be valorized through isolation and synthesis of natural polymers for application in wound dressing,tissue engineering and drug delivery systems.Aloe vera waste valorization was also reviewed through extraction of value-added bioactive compounds such as aloe-emodin,aloin and aloeresin.These value-added bioactive compounds have various applications in the cosmetics(non-steroidal anti-inflammatory,tyrosinase inhibitors)and pharmaceutical(anticancer agent and COVID 19 inhibitors)industry.展开更多
Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs wi...Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved.Herein,we reported a nanotransdermal delivery system composed of all-trans retinoic acid(TRA),triphenylphosphine(TPP)-modified cerium oxide(CeO2)nanoparticles,flexible nanoliposomes and gels(TCeO_(2)-TRA-FNL-Gel).The results revealed that TCeO_(2)synthesized by the anti-micelle method,with a size of approximately 5 nm,possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species(ROS).TCeO_(2)-TRA-FNL prepared by the film dispersion method,with a size of approximately 70 nm,showed high drug encapsulation efficiency(>96%).TCeO_(2)-TRA-FNL-Gel further showed sustained drug release behaviors,great transdermal permeation ability,and greater skin retention than the free TRA.The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO_(2)-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells.The results of in vivo imiquimod(IMQ)-induced model indicated that TCeO_(2)-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms.In summary,the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.展开更多
基金financially supported by Shenzhen Sanming Project of Medicine and Health, No. SZSM201612049 (to KJC)the Shenzhen Municipal Basic Research Project for Discipline Layout of China, No. JCYJ20170413161352000 (to YHL)Guangdong Basic Research Project, No. 2020A1515011427 (to ZZW)
文摘Previous studies have shown that berberine has neuroprotective effects against Alzheimer’s disease,including antagonizing tau phosphorylation,and inhibiting acetylcholinesterase activity and neural cell apoptosis.However,its low bioavailability and adverse reactions with conventional administration limit its clinical application.In this study,we prepared berberine nanoliposomes using liposomes characterized by low toxicity,high entrapment efficiency,and biodegradability,and modified them with lactoferrin.Lactoferrin-modified berberine nanoliposomes had uniform particle size and high entrapment efficiency.We used the lactoferrin-modified berberine nanoliposomes to treat a mouse model of Alzheimer’s disease established by injection of amyloid-beta 1-42 into the lateral ventricle.Lactoferrin-modified berberine nanoliposomes inhibited acetylcholinesterase activity and apoptosis in the hippocampus,reduced tau over-phosphorylation in the cerebral cortex,and improved mouse behavior.These findings suggest that modification with lactoferrin can enhance the neuroprotective effects of berberine nanoliposomes in Alzheimer’s disease.
基金supported by National Natural Science Foundation of China(31700015)Health Commission of Hunan Province(C202306017634)Changsha Natural Science Foundation(KQ2208092).
文摘Crocetin displays strong antioxidant,anti-inflammatory and anti-depression activity which is promising to relieve symptoms of fatigue.As a carotenoid,crocetin is difficult to dissolve in water and highly unstable against many environmental factors.Nanoliposome is used to encapsulate crocetin to improve its water dispersion.In the present study,the antifatigue activities and potential mechanism of crocetin loaded nanoliposome(CLN)was extensively investigated.The potential antifatigue pathway of CLN was analyzed.Furthermore,impact of CLN on the gut microbiota structure was examined which contributes to its antifatigue functions.CLN significantly increases exhaustive swimming time of fatigue mice,decreases the blood contents of lactic,blood urea nitrogen(BUN)and malondialdehyde(MDA).At the same time,CLN improves the activity of glutathione peroxidase(GSH-Px)and succinate dehydrogenase(SDH)enzyme,attenuates the oxidant stress in mice.CLN activates the adenosine monophosphate-activated kinase(AMPK)/peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α)signaling pathway of fatigue mice,increases the mRNA expression of ATP synthase.It also increases mRNA expression of mitochondrial transcription factor A(TFAM)which promotes mitochondrial biogenesis.Additionally,CLN ameliorates the gut microbiota structure by increasing the abundance of genus such as Lactobacillus in fatigue mice.In summary,CLN exerts strong anti-fatigue properties by decreasing the oxidant stress and the contents of harmful metabolites,augmenting the production of ATP,and potentially ameliorating the gut microbiota structure.
基金the support of Pharmacy Laboratory Centre and Animal Centre of Shenyang Pharmaceutical Universitysupported by the State Key Laboratory(Long-acting and Targeting Drug Delivery System)the Special Construction Project(Taishan ScholarePharmacy Specially Recruited Experts).
文摘The objective of this study is to compare the targeting ability of activated carbon nanoparticles and nanoliposomes,which are used as carriers for delivering docetaxel(DTX)to the metastatic lymph nodes.In this study,we first prepared the DTX-loaded activated carbon nanoparticles(DTX-AC-NPs)by modifying the activated carbon with nitric acid oxidation and absorbing DTX in the concentrated nitro-oxide nanocarbon.We then prepared DTX-loaded nanoliposomes(DTX-LPs)by the proliposome method.The physiochemical properties of DTX-AC-NPs and DTX-LPs were carefully evaluated in vitro.The metastatic lymph node uptake and the injection site retention were investigated by analyzing the DTX concentration in metastatic lymph nodes and injection sites.The result showed that DTX-AC-NPs and DTX-LPs with suitable and stable physicochemical properties could be used for in vivo lymph node targeting studies.DTX-AC-NPs significantly increased DTX-AUC_((0-24)) and prolonged DTX-retention in metastatic lymph nodes compared to DTX-LPs and non-modified activate carbon in vivo.This study demonstrated activated carbon nanoparticles may be potential intralymphatic drug delivery system to preferentially target regional metastatic lymph nodes.
基金sustained by the National Natural Science Foundation of China(82072512,52273152,22161132027)Zhejiang Provincial Natural Science Foundation of China(LY23H060013,LY21H070001,LY20H160044,LBY21H060003).
文摘Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects.Therefore,responsive drug-release strategies for inflammation treatment have been explored;however,no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation.Herein,we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes(R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate,RC-NL@DMF)that pre-cisely release encapsulated anti-pyroptotic drugs into pyroptotic cells.The activated key pyroptotic protein,the N-terminal domain of gasdermin E,selectively integrates with the cardiolipin of liposomes,thus forming pores for controlled drug release,pyroptosis,and inflammation inhibition.Therefore,RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice.Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery,suppressing pyroptosis and treating autoimmune inflammatory diseases.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81770268)the National Basic Research Program of China(No.2015CB932100).
文摘Nanoliposome is a useful dosage form to increase solubility and absorption of simvastatin(SMV), and consequently improves its therapeutic effects. However, in vivo toxicity of SMV could also be elevated accompanied by the absorption enhancement, which is a decisive factor for the clinical application of SMV nanoliposome(SMV-Lipo), but has not been studied systematically and reported so far. In this study, organ toxicity of SMV-Lipo was evaluated in mice in the presence and absence of isoproterenol and compared to those of free SMV. Results demonstrated that compared to free SMV, the SMV-Lipo administrated at an equal dose of 25 mg/kg/d led to severe myocardiotoxicity, hepatotoxicity at baseline and more pronounced liver injury with elevation of alanine aminotransferase. In addition, muscular adverse effect was also observed in SMV-Lipo treated group but not in SMV group. Pharmacokinetic studies revealed that compared to free SMV, the SMV-Lipo administration significantly improved the plasma SMV concentration, and the oral bioavailability was 6.5 times of free SMV. Notably, when the dosage of free SMV increased to 50 mg/kg/d, yielding the comparable plasma concentration as SMV-Lipo given at 25 mg/kg/d, the myocardiotoxicity was observed in free SMV treated mice as well, which further confirmed that the enhanced absorption of SMV by the nanoliposomal formulation resulted in more severe myocardiotoxicity than the equal dose of free SMV.
文摘Catechin(CTC)is a phenolic active compound with multiple biological activities.However,CTC is relatively unstable,easily oxidized and poorly soluble in water,showing limited bioavailability,which is a challenge for its application in the pharmaceutical and food industry.The purpose of this study was to promote the controlled release of CTC in the simulated gastrointestinal(GI)tract by using biopolymer-coupled nanoliposomes(NL).The nanoliposome was characterized by multifunctional polycrystalline X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR).The results exhibited that the size of the nanocarrier was in the range of 87-178 nm,the encapsulation efficiency of CTC was 93.5%,and the combination of chitosan(CS)and alginate(ALG)was better than that of monopolymer.In vitro digestion studies showed that ALG-CS-NL significantly controlled the release of CTC by the diffusion,dissolution,and slow release mechanism and retained about 33%-37%of CTC under the GI condition.These results demonstrated that ALG-CS-NL could increase the stability of CTC,which may be important for the development of nutraceutical-enriched functional foods.
文摘OBJECTIVE:To prepare aloe-emodin solid dispersion(AE-SD)and determine the metabolic process of AE and AE-SD in vivo.METHODS:AE-SD was prepared via solvent evaporation or solvent melting using PEG-6000 and PVP-K30 as carriers.Thermogravimetric analysis,X-ray diffraction spectroscopy,differential scanning calorimetry,Fourier transform infrared spectroscopy and scanning electron microscopy were used to identify the physical state of AESD.Optimal prescriptions were screened via the dissolution degree determination method.Using Phoenix software,AE suspension and AE-SD were subjected to a pharmacokinetic comparison study analyzing the alteration of behavior in vivo after AE was prepared as a solid dispersion.Acute toxicity was assessed in mice,and the physiological toxicity was used as the determination criterion for toxicity.RESULTS:AE-SD showed that AE existed in the carrier in an amorphous state.Compared with polyethylene glycol,polyvinylpyrrolidone(PVP)inhibited AE crystallization,causing the drug to transform from a dense crystalline state to an amorphous form and increasing the degree of drug dispersion.Therefore,it was more suitable as a carrier material for AE-SD.The addition of poloxamer(POL)was more beneficial to the stability of solid dispersions and could reduce the amount of PVP.The dissolution test confirmed that the optimal ratio of AE to the composite vector AE-PVP-POL was 1:2:2,and its dissolution effect was also optimal.Based on the pharmacokinetic comparison,the drug absorption was faster and quickly reached the peak of blood drug concentration in AE-SD compared to AE,the Cmax of AE-SD was greater than that of AE,and t1/2 and mean residence time of AE-SD were less than AE.The results showed that the drug metabolism in AE-SD was better,and the residence time was shorter.The toxicology study showed that both AE and AE-SD had no toxicity.CONCLUSION:This paper established that the solubility of the drug could be increased after preparing a solid dispersion,as demonstrated by in vitro dissolution experiments.In vivo pharmacokinetics studies confirmed that AE-SD could improve the bioavailability of AE in vivo,providing a new concept for the research and development of AE preparations.
文摘Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and sunscreen.However,the demand for these gel-based products has led to a surplus production of Aloe vera processing waste.An Aloe vera gel processing facility could generate up to 4000 kg of Aloe vera waste per month.Currently the Aloe vera waste is being disposed to the landfill or used as fertilizer.A sustainable management system for the Aloe vera processing waste should be considered,due to the negative societal and environmental impacts of the currents waste disposal methods.Therefore,this review focuses on various approaches that can be used to valorize Aloe vera waste into value-added products,such as animal and aquaculture feeds,biosorbents,biofuel and natural polymers.Researchers have reported Aloe vera waste for environmental applications biosorbents used for wastewater treatment of various pollutants.Several studies have also reported on the valorization of Aloe vera waste for production of biofuels such as bioethanol,mixed alcohol fuels,biogas and syngas.Aloe vera waste could also be valorized through isolation and synthesis of natural polymers for application in wound dressing,tissue engineering and drug delivery systems.Aloe vera waste valorization was also reviewed through extraction of value-added bioactive compounds such as aloe-emodin,aloin and aloeresin.These value-added bioactive compounds have various applications in the cosmetics(non-steroidal anti-inflammatory,tyrosinase inhibitors)and pharmaceutical(anticancer agent and COVID 19 inhibitors)industry.
基金supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LYY21H300001Zhejiang Medical and Health Science and Technology project under Grant No.2021KY906Hangzhou Medical Key Discipline Construction Project under Grant No.[2021]21–39
文摘Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved.Herein,we reported a nanotransdermal delivery system composed of all-trans retinoic acid(TRA),triphenylphosphine(TPP)-modified cerium oxide(CeO2)nanoparticles,flexible nanoliposomes and gels(TCeO_(2)-TRA-FNL-Gel).The results revealed that TCeO_(2)synthesized by the anti-micelle method,with a size of approximately 5 nm,possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species(ROS).TCeO_(2)-TRA-FNL prepared by the film dispersion method,with a size of approximately 70 nm,showed high drug encapsulation efficiency(>96%).TCeO_(2)-TRA-FNL-Gel further showed sustained drug release behaviors,great transdermal permeation ability,and greater skin retention than the free TRA.The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO_(2)-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells.The results of in vivo imiquimod(IMQ)-induced model indicated that TCeO_(2)-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms.In summary,the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.