期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向密集场景的多目标车辆检测算法
1
作者 霍爱清 郭岚洁 冯若水 《电子测量技术》 北大核心 2024年第9期129-136,共8页
目标检测可为自动驾驶车辆提供附近目标的位置、大小和类别,但是密集场景中多目标检测仍然存在漏检、误检问题,为此该文提出了一种AD-YOLOv5车辆检测模型。首先,利用轻量型结构CBAM注意力机制对特征提取网络中的C3模块进行了优化得到C-C... 目标检测可为自动驾驶车辆提供附近目标的位置、大小和类别,但是密集场景中多目标检测仍然存在漏检、误检问题,为此该文提出了一种AD-YOLOv5车辆检测模型。首先,利用轻量型结构CBAM注意力机制对特征提取网络中的C3模块进行了优化得到C-C3模块,提高了对特征信息的获取能力,降低了对其他特征的关注度;其次,在检测头部分对分类和回归任务进行解耦,以实现更强的特征表达;然后,利用广义幂变换对IoU进行转换操作,提出鲁棒性更好的Alpha-IoU损失函数,提升了模型的检测精度并加快模型的收敛速度;最后,采用GridMask数据增强技术,增加了样本的复杂性,并在处理后的数据集上进行了实验。实验结果表明,改进后的目标检测模型的平均精度均值达到72.72%,与原YOLOv5模型相比提高了2.25%,且模型具有较高的收敛速度,通过可视化对比实验,直观展示了本文模型在密集场景能有效避免误检、漏检现象。 展开更多
关键词 目标检测 密集场景 YOLOv5算法 alpha-IoU损失函数 CBAM 双检测头
下载PDF
基于Faster-YOLOv7的带式输送机异物实时检测 被引量:2
2
作者 唐俊 李敬兆 +2 位作者 石晴 杨萍 王瑞 《工矿自动化》 CSCD 北大核心 2023年第11期46-52,66,共8页
基于深度学习的目标检测算法在异物检测中具有较好的识别效果,但模型内存需求大,检测速度慢;轻量化深度学习网络能够大幅减少模型内存需求,提升检测速度,但在井下弱光环境中检测精度低。针对上述问题,提出了一种基于Faster-YOLOv7的带... 基于深度学习的目标检测算法在异物检测中具有较好的识别效果,但模型内存需求大,检测速度慢;轻量化深度学习网络能够大幅减少模型内存需求,提升检测速度,但在井下弱光环境中检测精度低。针对上述问题,提出了一种基于Faster-YOLOv7的带式输送机异物实时检测算法。通过限制对比度自适应直方图均衡化算法(CLAHE)进行图像增强,提高弱光环境中异物对比度;基于Mobilenetv3对YOLOv7主干网络进行轻量化设计,减少YOLOv7模型的计算量、参数量;添加有效通道注意力机制,缓解因特征通道数减少而导致的高层特征信息丢失问题;采用Alpha-IoU作为损失函数提高异物检测精度。实验结果表明:(1)Faster-YOLOv7的初始损失为0.143,最终稳定在0.039左右。(2)Faster-YOLOv7的检测速度可达42帧/s,较YOLOv5、YOLOv7分别提升了17,20帧/s;Faster-YOLOv7内存为14 MiB,较YOLOv5、YOLOv7分别降低了29,57 MiB;检测准确率达91.3%,较YOLOv5提升了8.8%。(3)将SSD、YOLOv5、轻量化YOLOv7、Faster-YOLOv7目标检测算法应用到煤矿井下带式输送机运煤图像及视频中,发现SSD在视频检测时发生了漏检现象,YOLO系列模型均有效地识别出待测异物,且Faster-YOLOv7识别结果的置信度更高。 展开更多
关键词 带式输送机 异物检测 图像增强 Faster-YOLOv7 注意力机制 alpha-IoU损失函数 限制对比度自适应直方图均衡化算法
下载PDF
改进YOLOv5轻量级网络的柑橘检测方法 被引量:13
3
作者 高新阳 魏晟 +1 位作者 温志庆 于天彪 《计算机工程与应用》 CSCD 北大核心 2023年第11期212-221,共10页
针对现有的柑橘检测算法准确率低、模型参数量大、检测实时性差、不适用移动采摘设备等问题,提出一种基于改进轻量模型YOLO-DoC的柑橘检测方法。引入Bottleneck结构的ShuffleNetV2网络作为YOLOv5骨干网络模型,构造轻量化网络。同时加入... 针对现有的柑橘检测算法准确率低、模型参数量大、检测实时性差、不适用移动采摘设备等问题,提出一种基于改进轻量模型YOLO-DoC的柑橘检测方法。引入Bottleneck结构的ShuffleNetV2网络作为YOLOv5骨干网络模型,构造轻量化网络。同时加入无参型SimAM注意力机制提高复杂环境下对目标的识别精度。为了提高检测网络对于目标果实的边界框定位精度,通过引入Alpha-IoU边界框回归损失函数的方法来获取目标的边界框。实验显示,YOLO-DoC模型的P(precision)值和mAP(mean average precision)值分别为98.8%和99.1%,参数量缩减为YOLOv5网络的1/7,模型的大小为2.8 MB。改进后的模型相比于原网络模型具有识别速度快、定位准度高以及占用内存少的优势,在满足精准采摘工作要求的前提下可以提高采摘效率。 展开更多
关键词 神经网络 注意力机制 YOLOv5 柑橘检测 损失函数 ShuffleNetV2 alpha-IoU
下载PDF
基于轻量化卷积神经网络的苹果目标检测算法
4
作者 刘雅文 刘义亭 +1 位作者 郁汉琪 李佩娟 《南京工程学院学报(自然科学版)》 2023年第4期14-22,共9页
针对当前苹果检测算法模型参数多、检测实时性差的问题,提出一种基于轻量化卷积神经网络的苹果目标检测算法.首先,用经典轻量化卷积神经网络ShuffleNet V2替换YOLO v5s的主干网络,实现模型的轻量化;然后,用stem模块取代主干网络的图像... 针对当前苹果检测算法模型参数多、检测实时性差的问题,提出一种基于轻量化卷积神经网络的苹果目标检测算法.首先,用经典轻量化卷积神经网络ShuffleNet V2替换YOLO v5s的主干网络,实现模型的轻量化;然后,用stem模块取代主干网络的图像处理层进行初始特征提取并且嵌入SPPF结构,弥补轻量化带来的精度损失;最后,在边界框的回归损失函数中引入α幂化指标,进一步提高边界框的定位精度.试验结果表明,改进后算法模型的平均精度均值达到95.8%,网络参数量降低了85.6%,在GPU上的单张平均检测时间仅10 ms,满足苹果采摘任务对检测精度和实时性的要求. 展开更多
关键词 苹果检测 YOLO v5s ShuffleNet V2 损失函数 alpha-IoU
下载PDF
改进YOLOv5的无人机影像果树检测方法研究
5
作者 冶晓文 买买提·沙吾提 +1 位作者 李荣鹏 何旭刚 《测绘科学》 CSCD 北大核心 2023年第11期200-210,共11页
在果树密集种植区,果树冠层间相互遮挡以及背景噪声限制了检测果树的准确性,为提高自然环境中果树冠层的检测精度,以新疆渭干河-库车河三角洲绿洲果园无人机遥感影像为基础,提出了一种基于改进YOLOv5的无人机影像果树检测方法。YOLOv5... 在果树密集种植区,果树冠层间相互遮挡以及背景噪声限制了检测果树的准确性,为提高自然环境中果树冠层的检测精度,以新疆渭干河-库车河三角洲绿洲果园无人机遥感影像为基础,提出了一种基于改进YOLOv5的无人机影像果树检测方法。YOLOv5被用作基线网络,使用注意力机制CBAM模块关注果树整体,并根据果树冠层的大小和形状自适应地调整感受野,增强果树的特征提取,以减少由于目标的大小和形状不同而导致的漏检;使用Alpha损失函数加大收敛效果,从而在不增加计算量的情况下减少复杂背景对果树检测结果的干扰。试验结果表明,改进的YOLOv5模型能够有效提高果树检测精度,与其他经典目标检测模型相比,平均精度均值mAP分别提高了0.52%、48.33%、13.44%、4.71%、26.71%和2.1%,具有较高的鲁棒性和泛化性。本文改进的YOLOv5模型能够准确检测出无人机影像中的果树冠层,可以为自动化果园监测、智能识别和工程应用提供参考。 展开更多
关键词 果树检测 无人机影像 YOLOv5 注意力机制 alpha损失函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部