The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were...The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor la, (RS)-l-aminoindan-1,5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.展开更多
BACKGROUND End-stage liver disease caused by non-alcoholic steatohepatitis(NASH)is the second leading indication for liver transplantation.To date,only moderately effective pharmacotherapies exist to treat NASH.Unders...BACKGROUND End-stage liver disease caused by non-alcoholic steatohepatitis(NASH)is the second leading indication for liver transplantation.To date,only moderately effective pharmacotherapies exist to treat NASH.Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies.The inflammatory cytokine tumor necrosis factor alpha(TNF-α)is important for the progression of liver disease.TNF signaling via TNF receptor 1(TNFR1)has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models.AIM To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH.METHODS NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes(TNFR1ΔHEP)and their wild-type littermates(TNFR1fl/fl).Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding.After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight,liver steatosis,liver fibrosis and markers of liver inflammation.RESULTS Obesity,liver injury,inflammation,steatosis and fibrosis was not different between TNFR1ΔHEP and TNFR1fl/fl mice.However,Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance.CONCLUSION Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH.However,improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis.展开更多
Aims: Polymorphisms of the β-adrenergic receptor, the frequency of which may differ in ethnic groups, alters β-receptor function. The aim of this study was to elucidate the frequency of β1 and β2-adrenergic recept...Aims: Polymorphisms of the β-adrenergic receptor, the frequency of which may differ in ethnic groups, alters β-receptor function. The aim of this study was to elucidate the frequency of β1 and β2-adrenergic receptor polymorphisms in healthy Greeks and to compare with those of Caucasian European (Euro) and African American (AA) origin. Methods: Ninety-nine individuals with a median age of 63 without clinical evidence of any disease were studied. Blood samples were obtained and common β1 and β2-adrenergic receptor polymorphisms that change the en-coded amino acid were determined by pyrosequencing. Results: The most common β1-adrenergic receptor polymorphism in Greeks is nucleotide substitution cytosine for guanine at position 1165 (1165 C/G) resulting in amino acid substitution arginine for glycine at position 389 (389 Arg/Gly) with a minor allele frequency of 28% (Euro 27%, AA 42%);this polymorphism increases the sensitivity of the β1-receptor. The most common β2-adrenergic receptor polymorphism in Greeks is the nucleotide substitution guanine for adenine at position 46 (46 G/A) resulting in amino acid substitution glycine for arginine at position 16 (16 Gly/Arg) with a minor allele frequency of 38% (Euro 41%, AA 50%);this polymerphism facilitates receptor down-regulation during chronic adrenergic stimulation. Conclusion: The most common β1 and β2-adrenergic receptor polymorphisms in the Greek population are similar to those of other European ancestry, and less common than in those of African origin indicating variability in ethnic groups. This information provides insight into common polymorphisms that may assist in optimizing β-antagonist and agonist therapy.展开更多
Hypoxia-inducible factor-1 alpha(HIF-1α) plays a vital role in the initiation, evaluation and prognosis in lung cancer. The prognostic value of HIF-1α reported in diverse study remains disputable. Accordingly, a m...Hypoxia-inducible factor-1 alpha(HIF-1α) plays a vital role in the initiation, evaluation and prognosis in lung cancer. The prognostic value of HIF-1α reported in diverse study remains disputable. Accordingly, a meta-analysis was implemented to further understand the prognostic role of HIF-1α in lung cancer. The relationship between HIF-1α and the clinicopathological characteristics and prognosis of lung cancer were investigated by a meta-analysis. Pub Med and Embase were searched from their inception to January 2015 for observational studies. Fixed-effects or random-effects meta-analyses were used to calculate odds ratios and 95% confidence intervals of different comparisons. A total of 20 studies met the criteria. The results showed that HIF-1α expression in lung cancer tissues was significantly higher than that in normal lung tissues. Expression of HIF-1α in patients with squamous cell carcinoma was significantly higher than that of patients with adenocarcinomas. Similarly, non-small cell lung cancer(NSCLC) patients had higher HIF-1α expression than small cell lung cancer(SCLC) patients. Moreover, lymph node metastasized tissues had higher HIF-1α expression than non-lymph node metastasized tissues. A high level HIF-1α expression was well correlated with the expression of vascular endothelial growth factor and epidermal growth factor receptor in the NSCLC. Notably, NSCLC or SCLC patients with positive HIF-1α expression in tumor tissues had lower overall survival rate than patients with negative HIF-1α expression. It was suggested that HIF-1α expression may be a prognostic biomarker and a potential therapeutic target for lung cancer.展开更多
Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. Th...Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.展开更多
Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via a...Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.展开更多
Several novel fluorescent probes targeting α_1-adrenergic receptors were well designed and synthesized by conjugating phenylpiperazine pharmacophore with coumarin and fluorescein fluorophores. These compounds showed ...Several novel fluorescent probes targeting α_1-adrenergic receptors were well designed and synthesized by conjugating phenylpiperazine pharmacophore with coumarin and fluorescein fluorophores. These compounds showed suitable fluorescence property, high receptor affinity, and low cytotoxicity. Moreover, the cell imaging results displayed that these probes can be effective tools for the real-time detection of ligand-receptor interactions, as well as the visualization and location of α_1-adrenergic receptors in living cells.展开更多
文摘The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor la, (RS)-l-aminoindan-1,5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.
基金Supported by the Swiss National Science Foundation,No.P2SKP3_158649,No.P3400PB_171581,and No.P3P3PB_171582(to Bluemel S)NIH grants(in part),No.R01 AA24726,No.U01 AA026939,and services provided by P30 DK120515(to Schnabl B).
文摘BACKGROUND End-stage liver disease caused by non-alcoholic steatohepatitis(NASH)is the second leading indication for liver transplantation.To date,only moderately effective pharmacotherapies exist to treat NASH.Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies.The inflammatory cytokine tumor necrosis factor alpha(TNF-α)is important for the progression of liver disease.TNF signaling via TNF receptor 1(TNFR1)has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models.AIM To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH.METHODS NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes(TNFR1ΔHEP)and their wild-type littermates(TNFR1fl/fl).Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding.After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight,liver steatosis,liver fibrosis and markers of liver inflammation.RESULTS Obesity,liver injury,inflammation,steatosis and fibrosis was not different between TNFR1ΔHEP and TNFR1fl/fl mice.However,Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance.CONCLUSION Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH.However,improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis.
文摘Aims: Polymorphisms of the β-adrenergic receptor, the frequency of which may differ in ethnic groups, alters β-receptor function. The aim of this study was to elucidate the frequency of β1 and β2-adrenergic receptor polymorphisms in healthy Greeks and to compare with those of Caucasian European (Euro) and African American (AA) origin. Methods: Ninety-nine individuals with a median age of 63 without clinical evidence of any disease were studied. Blood samples were obtained and common β1 and β2-adrenergic receptor polymorphisms that change the en-coded amino acid were determined by pyrosequencing. Results: The most common β1-adrenergic receptor polymorphism in Greeks is nucleotide substitution cytosine for guanine at position 1165 (1165 C/G) resulting in amino acid substitution arginine for glycine at position 389 (389 Arg/Gly) with a minor allele frequency of 28% (Euro 27%, AA 42%);this polymorphism increases the sensitivity of the β1-receptor. The most common β2-adrenergic receptor polymorphism in Greeks is the nucleotide substitution guanine for adenine at position 46 (46 G/A) resulting in amino acid substitution glycine for arginine at position 16 (16 Gly/Arg) with a minor allele frequency of 38% (Euro 41%, AA 50%);this polymerphism facilitates receptor down-regulation during chronic adrenergic stimulation. Conclusion: The most common β1 and β2-adrenergic receptor polymorphisms in the Greek population are similar to those of other European ancestry, and less common than in those of African origin indicating variability in ethnic groups. This information provides insight into common polymorphisms that may assist in optimizing β-antagonist and agonist therapy.
文摘Hypoxia-inducible factor-1 alpha(HIF-1α) plays a vital role in the initiation, evaluation and prognosis in lung cancer. The prognostic value of HIF-1α reported in diverse study remains disputable. Accordingly, a meta-analysis was implemented to further understand the prognostic role of HIF-1α in lung cancer. The relationship between HIF-1α and the clinicopathological characteristics and prognosis of lung cancer were investigated by a meta-analysis. Pub Med and Embase were searched from their inception to January 2015 for observational studies. Fixed-effects or random-effects meta-analyses were used to calculate odds ratios and 95% confidence intervals of different comparisons. A total of 20 studies met the criteria. The results showed that HIF-1α expression in lung cancer tissues was significantly higher than that in normal lung tissues. Expression of HIF-1α in patients with squamous cell carcinoma was significantly higher than that of patients with adenocarcinomas. Similarly, non-small cell lung cancer(NSCLC) patients had higher HIF-1α expression than small cell lung cancer(SCLC) patients. Moreover, lymph node metastasized tissues had higher HIF-1α expression than non-lymph node metastasized tissues. A high level HIF-1α expression was well correlated with the expression of vascular endothelial growth factor and epidermal growth factor receptor in the NSCLC. Notably, NSCLC or SCLC patients with positive HIF-1α expression in tumor tissues had lower overall survival rate than patients with negative HIF-1α expression. It was suggested that HIF-1α expression may be a prognostic biomarker and a potential therapeutic target for lung cancer.
文摘Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.
基金supported by a grant from the National Natural Science Foundation of China(No.81172898)
文摘Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.
基金supported by the Fok Ying Tong Education Foundation (122036)the Program of New Century Excellent Talents in University (NCET-11-0306)+2 种基金the Major Project of Science and Technology of Shandong Province (2015ZDJS04001)the Shandong Natural Science Foundation (JQ201019)the Independent Innovation Foundation of Shandong University (2010JQ005)
文摘Several novel fluorescent probes targeting α_1-adrenergic receptors were well designed and synthesized by conjugating phenylpiperazine pharmacophore with coumarin and fluorescein fluorophores. These compounds showed suitable fluorescence property, high receptor affinity, and low cytotoxicity. Moreover, the cell imaging results displayed that these probes can be effective tools for the real-time detection of ligand-receptor interactions, as well as the visualization and location of α_1-adrenergic receptors in living cells.