In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compa...In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.展开更多
Tibetan sheep is a unique breed of livestock in Alpine pastoral areas,which is one of the main economic pillars of animal husbandry in pastoral areas,in order to analyze and compare the estimated the economic and ecol...Tibetan sheep is a unique breed of livestock in Alpine pastoral areas,which is one of the main economic pillars of animal husbandry in pastoral areas,in order to analyze and compare the estimated the economic and ecological benefits of Tibetan sheep under different feeding modes,this paper used a simplified model from multiple angles of animal production,economics and Ecology,The results show that:(i)Under the traditional grazing condition,the annual income of raising one ewe is only 23.4 yuan;(ii)Under the high-efficiency breeding mode,the average income of ewes bred by high-efficiency technology was 168 yuan/(head·year),which was 7 times higher than that of ewes under traditional grazing;each lamb could produce an indirect economic benefit of 500 yuan;(iii)The ecosystem service value affected by each Tibetan sheep through grassland was above 150000 yuan.展开更多
Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few method...Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few methods for assessing the forage-livestock balance and none of those consider the dynamics of external abiotic factors that influence forage yields. In this study, we combine long-term field observations with remote sensing data and meteorological records of temperature and precipitation to quantify the impacts of climate change and human activities on the forage-livestock balance of alpine grasslands on the northern Tibetan Plateau for the years 2000 to 2016. We developed two methods: one is statical method based on equilibrium theory and the other is dynamic method based on non-equilibrium theory. We also examined the uncertainties and shortcomings of using these two methods as a basis for formulating policies for sustainable grassland management. Our results from the statical method showed severe overgrazing in the grasslands of all counties observed except Nyima(including Shuanghu) for the entire period from 2000 to 2016. In contrast, the results from the dynamic method showed overgrazing in only eight years of the study period 2000–2016, while in the other nine years alpine grasslands throughout the northern Tibetan Plateau were less grazed and had forage surpluses. Additionally, the dynamic method found that the alpine grasslands of counties in the northeastern and southwestern areas of the northern Tibetan Plateau were overgrazed, and that alpine grasslands in the central area of the plateau were less grazed with forage surpluses. The latter finding is consistent with field surveys. Therefore, we suggest that the dynamic method is more appropriate for assessment of forage-livestock management efforts in alpine grasslands on the northern Tibetan Plateau. However, the statical method is still recommended for assessments of alpine grasslands profoundly disturbed by irrational human activities.展开更多
Plant photosynthesis is the fundamental driver of all the biospheric functions. Alpine meadow on the Tibetan Plateau is sensitive to rapid climate change, and thus can be considered an indicator for the response of te...Plant photosynthesis is the fundamental driver of all the biospheric functions. Alpine meadow on the Tibetan Plateau is sensitive to rapid climate change, and thus can be considered an indicator for the response of terrestrial ecosystems to climate change. However, seasonal variations in photosynthetic parameters, including the fraction of photosynthetically active radiation by canopy(FPAR), the light extinction coefficient(k) through canopy, and the leaf area index(LAI) of plant communities, are not known for alpine meadows on the Tibetan Plateau. In this study, we used field measurements of radiation components and canopy structure from 2009 to 2011 at a typical alpine meadow on the northern Tibetan Plateau to calculate these three photosynthetic parameters. We developed a satellite-based(NDVI and EVI) method derived from the Beer-Lambert law to estimate the seasonal dynamics of FPAR, k,and LAI, and we compared these estimates with the Moderate Resolution Imaging Spectroradiometer(MODIS) FPAR(FPAR_MOD) and LAI product(LAI_MOD). The results showed that the average daily FPAR was 0.33, 0.37 and 0.35, respectively, from 2009 to 2011, and that the temporal variations could be explained by all four satellite-based FPAR estimations, including FPAR_MOD, an FPAR estimation derived from the Beer-Lambert law with a constant k(FPAR_LAI), and two FPAR estimations from the nonlinear functions between the ground measurements of FPAR(FAPRg) and NDVI/EVI(FPAR_NDVI and FPAR_EVI). We found that FPAR_MOD seriously undervalued FPARg by over 40%. Tower-based FPAR_LAI also significantly underestimated FPARg by approximately 20% due to the constant k(0.5) throughout the whole growing seasons. This indicated that using FPAR_LAI to validate the FPAR_MOD was not an appropriate method in this alpine meadow because the seasonal variation of k ranged from 0.19 to 2.95 in this alpine meadow. Thus, if the seasonal variation of k was taken into consideration, both FPAR_NDVI and FPAR_EVI provided better descriptions, with negligible overestimates of less than 5% of FAPRg(RMSE=0.05), in FPARg estimations than FPAR_MOD and FPAR_LAI. Combining the satellite-based(NDVI and EVI) estimations of seasonal FPAR and k, LAI_NDVI and LAI_EVI derived from the Beer-Lambert law also provided better LAIg estimations than LAI_MOD(less than 30% of LAIg). Therefore, this study concluded that satellite-based models derived from the Beer-Lambert law were a simple and efficient method for estimating the seasonal dynamics of FPAR, k and LAI in this alpine meadow.展开更多
光能利用效率(light use efficiency,LUE)是指初级生产力与植被冠层所吸收的光合有效辐射(absorbed pho-tosynthetically active radiation,APAR)之比,它反映了植被利用光能的能力。定量化生产力的时空变化是定量化全球碳循环的重要研...光能利用效率(light use efficiency,LUE)是指初级生产力与植被冠层所吸收的光合有效辐射(absorbed pho-tosynthetically active radiation,APAR)之比,它反映了植被利用光能的能力。定量化生产力的时空变化是定量化全球碳循环的重要研究内容,而LUE作为光能生产力模型中的一个重要参数,是定量化生产力时空变化的基础。因此,定量化全球植被的LUE是定量化全球碳循环的重要组成部分。基于MODIS光能利用效率算法,本研究模拟了2004-2005年藏北高寒草甸生态系统的光能利用效率(LUEMODIS),并用观测的光能利用效率(LUEEC)对模型进行了验证。在MODIS算法中,日最低气温(Tamin)和饱和水汽压亏缺(VPD)分别被用来计算温度胁迫因子(Tscalar)和水分胁迫因子(Wscalar)。相关分析和多重逐步回归分析结果表明,相对于Wscalar,Tscalar更能够解释观测的LUE的季节变化。2004和2005年的模拟值分别高估了约14.97%和16.57%的观测值,但配对T检验显示模拟值和观测值差异不显著,即基于MODIS的LUE算法在模拟藏北高寒草甸LUE方面具有较高的精度。相关分析表明,观测的LUE与Tamin的相关性好于观测的LUE与平均气温的相关性,这表明在反应藏北高寒草甸生态系统LUE的季节变异方面,Tamin优于平均气温。总之,基于MODIS算法的LUE模型能够比较准确地定量化藏北高寒草甸生态系统的LUE。展开更多
文摘In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.
基金Key Research&Development and Transformation Plan Project of Qinghai Province(2019-SF-148)National Key Research and Development Program of China(2016YFC0501901)Special Fund of Qinghai Province for Construction of Innovative Platform(2017-ZJ-Y20).
文摘Tibetan sheep is a unique breed of livestock in Alpine pastoral areas,which is one of the main economic pillars of animal husbandry in pastoral areas,in order to analyze and compare the estimated the economic and ecological benefits of Tibetan sheep under different feeding modes,this paper used a simplified model from multiple angles of animal production,economics and Ecology,The results show that:(i)Under the traditional grazing condition,the annual income of raising one ewe is only 23.4 yuan;(ii)Under the high-efficiency breeding mode,the average income of ewes bred by high-efficiency technology was 168 yuan/(head·year),which was 7 times higher than that of ewes under traditional grazing;each lamb could produce an indirect economic benefit of 500 yuan;(iii)The ecosystem service value affected by each Tibetan sheep through grassland was above 150000 yuan.
基金The National Key Research and Development Program of China(2016YFC0502001)The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20010201,DA19050502)。
文摘Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few methods for assessing the forage-livestock balance and none of those consider the dynamics of external abiotic factors that influence forage yields. In this study, we combine long-term field observations with remote sensing data and meteorological records of temperature and precipitation to quantify the impacts of climate change and human activities on the forage-livestock balance of alpine grasslands on the northern Tibetan Plateau for the years 2000 to 2016. We developed two methods: one is statical method based on equilibrium theory and the other is dynamic method based on non-equilibrium theory. We also examined the uncertainties and shortcomings of using these two methods as a basis for formulating policies for sustainable grassland management. Our results from the statical method showed severe overgrazing in the grasslands of all counties observed except Nyima(including Shuanghu) for the entire period from 2000 to 2016. In contrast, the results from the dynamic method showed overgrazing in only eight years of the study period 2000–2016, while in the other nine years alpine grasslands throughout the northern Tibetan Plateau were less grazed and had forage surpluses. Additionally, the dynamic method found that the alpine grasslands of counties in the northeastern and southwestern areas of the northern Tibetan Plateau were overgrazed, and that alpine grasslands in the central area of the plateau were less grazed with forage surpluses. The latter finding is consistent with field surveys. Therefore, we suggest that the dynamic method is more appropriate for assessment of forage-livestock management efforts in alpine grasslands on the northern Tibetan Plateau. However, the statical method is still recommended for assessments of alpine grasslands profoundly disturbed by irrational human activities.
基金The National Key Research and Development Program of China(2016YFC0502001)The National Natural Science Foundation of China(41807331)The West Light Foundation of the Chinese Academy of Sciences(2018)。
文摘Plant photosynthesis is the fundamental driver of all the biospheric functions. Alpine meadow on the Tibetan Plateau is sensitive to rapid climate change, and thus can be considered an indicator for the response of terrestrial ecosystems to climate change. However, seasonal variations in photosynthetic parameters, including the fraction of photosynthetically active radiation by canopy(FPAR), the light extinction coefficient(k) through canopy, and the leaf area index(LAI) of plant communities, are not known for alpine meadows on the Tibetan Plateau. In this study, we used field measurements of radiation components and canopy structure from 2009 to 2011 at a typical alpine meadow on the northern Tibetan Plateau to calculate these three photosynthetic parameters. We developed a satellite-based(NDVI and EVI) method derived from the Beer-Lambert law to estimate the seasonal dynamics of FPAR, k,and LAI, and we compared these estimates with the Moderate Resolution Imaging Spectroradiometer(MODIS) FPAR(FPAR_MOD) and LAI product(LAI_MOD). The results showed that the average daily FPAR was 0.33, 0.37 and 0.35, respectively, from 2009 to 2011, and that the temporal variations could be explained by all four satellite-based FPAR estimations, including FPAR_MOD, an FPAR estimation derived from the Beer-Lambert law with a constant k(FPAR_LAI), and two FPAR estimations from the nonlinear functions between the ground measurements of FPAR(FAPRg) and NDVI/EVI(FPAR_NDVI and FPAR_EVI). We found that FPAR_MOD seriously undervalued FPARg by over 40%. Tower-based FPAR_LAI also significantly underestimated FPARg by approximately 20% due to the constant k(0.5) throughout the whole growing seasons. This indicated that using FPAR_LAI to validate the FPAR_MOD was not an appropriate method in this alpine meadow because the seasonal variation of k ranged from 0.19 to 2.95 in this alpine meadow. Thus, if the seasonal variation of k was taken into consideration, both FPAR_NDVI and FPAR_EVI provided better descriptions, with negligible overestimates of less than 5% of FAPRg(RMSE=0.05), in FPARg estimations than FPAR_MOD and FPAR_LAI. Combining the satellite-based(NDVI and EVI) estimations of seasonal FPAR and k, LAI_NDVI and LAI_EVI derived from the Beer-Lambert law also provided better LAIg estimations than LAI_MOD(less than 30% of LAIg). Therefore, this study concluded that satellite-based models derived from the Beer-Lambert law were a simple and efficient method for estimating the seasonal dynamics of FPAR, k and LAI in this alpine meadow.
文摘光能利用效率(light use efficiency,LUE)是指初级生产力与植被冠层所吸收的光合有效辐射(absorbed pho-tosynthetically active radiation,APAR)之比,它反映了植被利用光能的能力。定量化生产力的时空变化是定量化全球碳循环的重要研究内容,而LUE作为光能生产力模型中的一个重要参数,是定量化生产力时空变化的基础。因此,定量化全球植被的LUE是定量化全球碳循环的重要组成部分。基于MODIS光能利用效率算法,本研究模拟了2004-2005年藏北高寒草甸生态系统的光能利用效率(LUEMODIS),并用观测的光能利用效率(LUEEC)对模型进行了验证。在MODIS算法中,日最低气温(Tamin)和饱和水汽压亏缺(VPD)分别被用来计算温度胁迫因子(Tscalar)和水分胁迫因子(Wscalar)。相关分析和多重逐步回归分析结果表明,相对于Wscalar,Tscalar更能够解释观测的LUE的季节变化。2004和2005年的模拟值分别高估了约14.97%和16.57%的观测值,但配对T检验显示模拟值和观测值差异不显著,即基于MODIS的LUE算法在模拟藏北高寒草甸LUE方面具有较高的精度。相关分析表明,观测的LUE与Tamin的相关性好于观测的LUE与平均气温的相关性,这表明在反应藏北高寒草甸生态系统LUE的季节变异方面,Tamin优于平均气温。总之,基于MODIS算法的LUE模型能够比较准确地定量化藏北高寒草甸生态系统的LUE。