Alpine swamp meadows on the Tibetan Plateau,with the highest soil organic carbon content across the globe,are extremely vulnerable to climate change.To accurately and continually quantify the gross primary production...Alpine swamp meadows on the Tibetan Plateau,with the highest soil organic carbon content across the globe,are extremely vulnerable to climate change.To accurately and continually quantify the gross primary production(GPP) is critical for understanding the dynamics of carbon cycles from site-scale to global scale.Eddy covariance technique(EC) provides the best approach to measure the site-specific carbon flux,while satellite-based models can estimate GPP from local,small scale sites to regional and global scales.However,the suitability of most satellite-based models for alpine swamp meadow is unknown.Here we tested the performance of four widely-used models,the MOD17 algorithm(MOD),the vegetation photosynthesis model(VPM),the photosynthetic capacity model(PCM),and the alpine vegetation model(AVM),in providing GPP estimations for a typical alpine swamp meadow as compared to the GPP estimations provided by EC-derived GPP.Our results indicated that all these models provided good descriptions of the intra-annual GPP patterns(R〉20.89,P〈0.0001),but hardly agreed with the inter-annual GPP trends.VPM strongly underestimated the GPP of alpine swamp meadow,only accounting for 54.0% of GPP_EC.However,the other three satellite-based GPP models could serve as alternative tools for tower-based GPP observation.GPP estimated from AVM captured 94.5% of daily GPP_EC with the lowest average RMSE of 1.47 g C m^(-2).PCM slightly overestimated GPP by 12.0% while MODR slightly underestimated by 8.1% GPP compared to the daily GPP_EC.Our results suggested that GPP estimations for this alpine swamp meadow using AVM were superior to GPP estimations using the other relatively complex models.展开更多
Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic ch...Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic characteristics of changes in the water and heat dynamics in response to experimental warming in a typical alpine swamp meadow ecosystem. Data sets under open top chambers(OTC) and the control manipulations were collected over a complete year. The results show that annual(2008) air temperatures of OTC-1 and OTC-2 were 6.7 °C and 3.5 °C warmer than the control. Rising temperature promotes plant growth and development. The freeze-thaw and isothermal days of OTCs appeared more frequently than the control, owing to comparably higher water and better vegetation conditions. OTCs soil moisture decreased with the decrease of soil depth; however, there was an obviously middle dry aquifer of the control, which is familiar in QTP. Moreover, experimental warming led to an increase in topsoil water content due to poorly drained swamp meadow ecosystem with higher organic matter content and thicker root horizons. The results of this study will have some contributions to alpine cold ecosystem water-heat process and water cycle under climate change.展开更多
In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets ...In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.展开更多
基金National Natural Science Foundation of China(41571042,40603024)
文摘Alpine swamp meadows on the Tibetan Plateau,with the highest soil organic carbon content across the globe,are extremely vulnerable to climate change.To accurately and continually quantify the gross primary production(GPP) is critical for understanding the dynamics of carbon cycles from site-scale to global scale.Eddy covariance technique(EC) provides the best approach to measure the site-specific carbon flux,while satellite-based models can estimate GPP from local,small scale sites to regional and global scales.However,the suitability of most satellite-based models for alpine swamp meadow is unknown.Here we tested the performance of four widely-used models,the MOD17 algorithm(MOD),the vegetation photosynthesis model(VPM),the photosynthetic capacity model(PCM),and the alpine vegetation model(AVM),in providing GPP estimations for a typical alpine swamp meadow as compared to the GPP estimations provided by EC-derived GPP.Our results indicated that all these models provided good descriptions of the intra-annual GPP patterns(R〉20.89,P〈0.0001),but hardly agreed with the inter-annual GPP trends.VPM strongly underestimated the GPP of alpine swamp meadow,only accounting for 54.0% of GPP_EC.However,the other three satellite-based GPP models could serve as alternative tools for tower-based GPP observation.GPP estimated from AVM captured 94.5% of daily GPP_EC with the lowest average RMSE of 1.47 g C m^(-2).PCM slightly overestimated GPP by 12.0% while MODR slightly underestimated by 8.1% GPP compared to the daily GPP_EC.Our results suggested that GPP estimations for this alpine swamp meadow using AVM were superior to GPP estimations using the other relatively complex models.
基金funded by The Natural Science foundation of China (No. 40925002)The Natural Science foundation of Fujian Province (No. 2015J05114)
文摘Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic characteristics of changes in the water and heat dynamics in response to experimental warming in a typical alpine swamp meadow ecosystem. Data sets under open top chambers(OTC) and the control manipulations were collected over a complete year. The results show that annual(2008) air temperatures of OTC-1 and OTC-2 were 6.7 °C and 3.5 °C warmer than the control. Rising temperature promotes plant growth and development. The freeze-thaw and isothermal days of OTCs appeared more frequently than the control, owing to comparably higher water and better vegetation conditions. OTCs soil moisture decreased with the decrease of soil depth; however, there was an obviously middle dry aquifer of the control, which is familiar in QTP. Moreover, experimental warming led to an increase in topsoil water content due to poorly drained swamp meadow ecosystem with higher organic matter content and thicker root horizons. The results of this study will have some contributions to alpine cold ecosystem water-heat process and water cycle under climate change.
基金supported by the National Natural Science Foundation of China (Grant No.41101055)the Hundred Talents Program of the Chinese Academy of Sciences granted to Tonghua Wu (Grant No.51Y251571)the “National Basic Research Program of China (973 Program)” (Grant No.2010CB951402)
文摘In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.