Birch(Betula tortuosa)is one of the treeline forming species within the Siberian Mountains.We analysed the area dynamics of birch stands and the upslope climb of birch treeline based on the Landsat time series scenes ...Birch(Betula tortuosa)is one of the treeline forming species within the Siberian Mountains.We analysed the area dynamics of birch stands and the upslope climb of birch treeline based on the Landsat time series scenes and on-ground data.We found that since the warming onset(1970th)birch area increased by 10%,birch stands and treeline boundary were moving upslope with a rate of 1.4 m/yr and 4.0 m/yr.Birch upslope shift correlated with air temperatures at the beginning(May-June)and the end(August-October)of the growth period.Meanwhile,no correlation was found between birch upslope migration and precipitation.Winds negatively influenced both birch area growth and birch upslope climb during spring,fall,and wintertime.In the windy habitats,birch,together with larch and Siberian pine,formed clusters(hedges)which mitigated the influence of adverse winds.These clusters are the adaptive pattern for trees’upslope climb within windward slopes.The other adaptation to the harsh alpine ecotone habitat is non-leaf(bark)photosynthesis which supports tree survival.Thereby,Betula tortuosa upslope climb depends on the wind impact and warming in spring and fall that extended growth period.With ongoing warming and observed wind speed decrease on the background of sufficient precipitation,it is expected to further birch advance into alpine tundra in the Siberian Mountains.展开更多
The alpine treeline ecotone is characterized as the upper limit of the forest in the high-mountain ecosystem.Due to the freeze-thaw cycles,the soil organism community,such as microbial communities are expected to chan...The alpine treeline ecotone is characterized as the upper limit of the forest in the high-mountain ecosystem.Due to the freeze-thaw cycles,the soil organism community,such as microbial communities are expected to change between seasons.However,there are limited microbialcommunity studies focused on the high altitude alpine ecosystem.We conducted a study in the alpine treeline ecotone on the eastern Qinghai-Tibet Plateau,China,and investigated the seasonal variability of the soil microbial community.We collected all soil samples within the alpine treeline ecotone,between the treeline and timberline in the high-mountain region.The 16S rRNA genes of the microbial communities(bacterial and archaeal)were analyzed by highthroughput sequencing to the genus level.The results showed that soil microbial community in the alpine treeline ecotone was consistently dominated by eight phyla which consisted of 95% of the total microbial community,including Proteobacteria,Actinobacteria,Acidobacteria,Firmicutes,Planctomycetes,Chloroflexi,Bacteroidetes,and Verrucomicrobia.The overall diversity and evenness of the community were relatively stable,with an average of 0.5% difference between seasons.The highest seasonal variability occurred at the upper boundary of the alpine treeline ecotone,and few or almost no seasonal change was observed at lower elevations,indicating dense forest cover and litter deposition might have created a local microclimate that reduced seasonal variation among the surrounding environmental conditions.Our study was one of the first group that documented the microbial community assemblage in the treeline ecotone on the Qinghai-Tibet Plateau.展开更多
The alpine treeline ecotone is defined as a forest-grassland or forest-tundra transition boundary either between subalpine forest and treeless grassland,or between subalpine forest and treeless tundra.The alpine treel...The alpine treeline ecotone is defined as a forest-grassland or forest-tundra transition boundary either between subalpine forest and treeless grassland,or between subalpine forest and treeless tundra.The alpine treeline ecotone serves irreplaceable ecological functions and provides various ecosystem services.There are three lines associated with the alpine treeline ecotone,the tree species line(i.e.,the highest elevational limit of individual tree establishment and growth),the treeline(i.e.,the transition line between tree islands and isolated individual trees)and the timber line(i.e.,the upper boundary of the closed subalpine forest).The alpine treeline ecotone is the belt region between the tree species line and the timber line of the closed forest.The treeline is very sensitive to climate change and is often used as an indicator for the response of vegetation to global warming.However,there is currently no comprehensive review in the field of alpine treeline advance under global warming.Therefore,this review summarizes the literature and discusses the theoretical bases and challenges in the study of alpine treeline dynamics from the following four aspects:(1)Ecological functions and issues of treeline dynamics;(2)Methodology for monitoring treeline dynamics;(3)Treeline shifts in different climate zones;(4)Driving factors for treeline upward shifting.展开更多
基金The research was funded by Russian Foundation for Basic Research,Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science,project number 20-44-240007.
文摘Birch(Betula tortuosa)is one of the treeline forming species within the Siberian Mountains.We analysed the area dynamics of birch stands and the upslope climb of birch treeline based on the Landsat time series scenes and on-ground data.We found that since the warming onset(1970th)birch area increased by 10%,birch stands and treeline boundary were moving upslope with a rate of 1.4 m/yr and 4.0 m/yr.Birch upslope shift correlated with air temperatures at the beginning(May-June)and the end(August-October)of the growth period.Meanwhile,no correlation was found between birch upslope migration and precipitation.Winds negatively influenced both birch area growth and birch upslope climb during spring,fall,and wintertime.In the windy habitats,birch,together with larch and Siberian pine,formed clusters(hedges)which mitigated the influence of adverse winds.These clusters are the adaptive pattern for trees’upslope climb within windward slopes.The other adaptation to the harsh alpine ecotone habitat is non-leaf(bark)photosynthesis which supports tree survival.Thereby,Betula tortuosa upslope climb depends on the wind impact and warming in spring and fall that extended growth period.With ongoing warming and observed wind speed decrease on the background of sufficient precipitation,it is expected to further birch advance into alpine tundra in the Siberian Mountains.
基金funded by the National Natural Science Foundation of China(NSFC,No.41271094 and No.40871124).
文摘The alpine treeline ecotone is characterized as the upper limit of the forest in the high-mountain ecosystem.Due to the freeze-thaw cycles,the soil organism community,such as microbial communities are expected to change between seasons.However,there are limited microbialcommunity studies focused on the high altitude alpine ecosystem.We conducted a study in the alpine treeline ecotone on the eastern Qinghai-Tibet Plateau,China,and investigated the seasonal variability of the soil microbial community.We collected all soil samples within the alpine treeline ecotone,between the treeline and timberline in the high-mountain region.The 16S rRNA genes of the microbial communities(bacterial and archaeal)were analyzed by highthroughput sequencing to the genus level.The results showed that soil microbial community in the alpine treeline ecotone was consistently dominated by eight phyla which consisted of 95% of the total microbial community,including Proteobacteria,Actinobacteria,Acidobacteria,Firmicutes,Planctomycetes,Chloroflexi,Bacteroidetes,and Verrucomicrobia.The overall diversity and evenness of the community were relatively stable,with an average of 0.5% difference between seasons.The highest seasonal variability occurred at the upper boundary of the alpine treeline ecotone,and few or almost no seasonal change was observed at lower elevations,indicating dense forest cover and litter deposition might have created a local microclimate that reduced seasonal variation among the surrounding environmental conditions.Our study was one of the first group that documented the microbial community assemblage in the treeline ecotone on the Qinghai-Tibet Plateau.
基金The National Natural Science Foundation of China(41901361)The Six Talent Peaks Project of Jiangsu Province(TD-XYDXX-006)+1 种基金The Natural Science Foundation of Jiangsu Province(BK20180769)The Major Basic Research Project of the Natural Science Foundation of theJiangsu Higher Education Institutions(18KJB180009).
文摘The alpine treeline ecotone is defined as a forest-grassland or forest-tundra transition boundary either between subalpine forest and treeless grassland,or between subalpine forest and treeless tundra.The alpine treeline ecotone serves irreplaceable ecological functions and provides various ecosystem services.There are three lines associated with the alpine treeline ecotone,the tree species line(i.e.,the highest elevational limit of individual tree establishment and growth),the treeline(i.e.,the transition line between tree islands and isolated individual trees)and the timber line(i.e.,the upper boundary of the closed subalpine forest).The alpine treeline ecotone is the belt region between the tree species line and the timber line of the closed forest.The treeline is very sensitive to climate change and is often used as an indicator for the response of vegetation to global warming.However,there is currently no comprehensive review in the field of alpine treeline advance under global warming.Therefore,this review summarizes the literature and discusses the theoretical bases and challenges in the study of alpine treeline dynamics from the following four aspects:(1)Ecological functions and issues of treeline dynamics;(2)Methodology for monitoring treeline dynamics;(3)Treeline shifts in different climate zones;(4)Driving factors for treeline upward shifting.