With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to ...With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to high- voltage transmission lines and electrified railways over long distances. Alternating pipelines is very serious in laboratory experiments were current (AC) corrosion of such cases. In this work, carried out with an electrochemical method in a simulated soil solution at various AC current densities from 0 to 200 A]m2 and AC frequencies from 10 to 200 Hz. Experimental results indicated that with an increase in the AC current density, the corrosion po- tential of an X60 steel electrode shifted negatively, the anodic current density increased significantly, and the corrosion rate increased. Moreover, with an increase in the AC frequency, the corrosion potential of the X60 electrode shifted positively and the anodic current density decreased, which led to a decrease in the corrosion rate. Furthermore, the morphology of X60 electrodes indicated that uniform corrosion occurred at a low AC current density; while corrosion pits were found on the X60 electrode surface at a high AC current density, and deep corrosion pits seriously damaged the pipelines and might lead to leakage.展开更多
相较于传统车载充电系统,集成型车载充电系统(integrated onboard charger system,IOCS)在成本、功率密度等方面具备显著优势。文中基于六相永磁电驱系统设计了一台IOCS,并研究了模型预测电流控制(model predictive current control,MP...相较于传统车载充电系统,集成型车载充电系统(integrated onboard charger system,IOCS)在成本、功率密度等方面具备显著优势。文中基于六相永磁电驱系统设计了一台IOCS,并研究了模型预测电流控制(model predictive current control,MPCC)算法在该系统并网模式下的应用。首先,分析所提IOCS的电路拓扑并建立数学模型,同时介绍传统MPCC的实施流程。然后,针对传统MPCC计算量大、稳态性能差等不足,提出一种基于占空比优化的MPCC(MPCC based on duty cycle optimization,DCO-MPCC)策略。一方面,减少备选电压矢量数量,降低电流预测环节带来的计算负担;另一方面,提出一种占空比优化技术,改善系统稳态性能。最后,通过实验验证了所提算法的有效性与优越性。实验结果表明,DCO-MPCC策略能够显著提升系统稳态性能并减少算法计算量。充电与车网互动(vehicle to grid,V2G)工况下,网侧电流总谐波畸变(total harmonic distortion,THD)分别降低6.18%与5.92%,算法运行时间减少17.54μs。展开更多
An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse o...An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.展开更多
Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition ...Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3-1.2 MeV and 0.3-7 MeV, separately. High energy runaway electrons (~MeV) axe found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (~tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.展开更多
The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance m...The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance method in a 12-inch coplanar AC PDP. The wall charge waveforms show the relationship between the slope ratio of the falling ramp reset pulse and the wall charges at the end of the falling ramp reset pulse which influences the addressing stability. Then the effects of the slope ratio of the linear falling ramp reset pulse on the addressing voltage and addressing time were investigated. The experimental results show that the minimum addressing voltage increases with the increase of the slope ratio of the falling ramp reset pulse, and so does the minimum addressing time. Based on the experimental results, the optimization of the addressing time and the slope ratio of the falling ramp pulse is discussed.展开更多
基金sponsored by the Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No.2011BAK06B01)
文摘With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to high- voltage transmission lines and electrified railways over long distances. Alternating pipelines is very serious in laboratory experiments were current (AC) corrosion of such cases. In this work, carried out with an electrochemical method in a simulated soil solution at various AC current densities from 0 to 200 A]m2 and AC frequencies from 10 to 200 Hz. Experimental results indicated that with an increase in the AC current density, the corrosion po- tential of an X60 steel electrode shifted negatively, the anodic current density increased significantly, and the corrosion rate increased. Moreover, with an increase in the AC frequency, the corrosion potential of the X60 electrode shifted positively and the anodic current density decreased, which led to a decrease in the corrosion rate. Furthermore, the morphology of X60 electrodes indicated that uniform corrosion occurred at a low AC current density; while corrosion pits were found on the X60 electrode surface at a high AC current density, and deep corrosion pits seriously damaged the pipelines and might lead to leakage.
文摘相较于传统车载充电系统,集成型车载充电系统(integrated onboard charger system,IOCS)在成本、功率密度等方面具备显著优势。文中基于六相永磁电驱系统设计了一台IOCS,并研究了模型预测电流控制(model predictive current control,MPCC)算法在该系统并网模式下的应用。首先,分析所提IOCS的电路拓扑并建立数学模型,同时介绍传统MPCC的实施流程。然后,针对传统MPCC计算量大、稳态性能差等不足,提出一种基于占空比优化的MPCC(MPCC based on duty cycle optimization,DCO-MPCC)策略。一方面,减少备选电压矢量数量,降低电流预测环节带来的计算负担;另一方面,提出一种占空比优化技术,改善系统稳态性能。最后,通过实验验证了所提算法的有效性与优越性。实验结果表明,DCO-MPCC策略能够显著提升系统稳态性能并减少算法计算量。充电与车网互动(vehicle to grid,V2G)工况下,网侧电流总谐波畸变(total harmonic distortion,THD)分别降低6.18%与5.92%,算法运行时间减少17.54μs。
基金National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10935004 and 10775041)
文摘Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3-1.2 MeV and 0.3-7 MeV, separately. High energy runaway electrons (~MeV) axe found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (~tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.
基金supported by the 2002 Ministry of Education Project for Science and Technology (2002,No.77)
文摘The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance method in a 12-inch coplanar AC PDP. The wall charge waveforms show the relationship between the slope ratio of the falling ramp reset pulse and the wall charges at the end of the falling ramp reset pulse which influences the addressing stability. Then the effects of the slope ratio of the linear falling ramp reset pulse on the addressing voltage and addressing time were investigated. The experimental results show that the minimum addressing voltage increases with the increase of the slope ratio of the falling ramp reset pulse, and so does the minimum addressing time. Based on the experimental results, the optimization of the addressing time and the slope ratio of the falling ramp pulse is discussed.