A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiat...Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.展开更多
All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravit...All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravity. In order to "push" the molten metal into the weld, a new kind of U-frame excitation model, which could produce electromagnetic force to balance the gravity of the molten pool, was designed. The related parameters of the excitation model were simulated by Maxwell 3D, and the relationships between the parameters and the magnetic induction intensity were analyzed. Finally, the electromagnetic force in the molten pool was calculated, and the appropriate parameters of the U-frame excitation model were determined. The results of the simulation verify the feasibility of the all-position welding excitation model.展开更多
A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Pe...A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金Project supported by the Open Project of Science and Technology on Scramjet Laboratory,China(Grant No.CG-2014-05-118)the National Natural Science Foundation of China(Grant No.91441123)
文摘Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.
基金This work was supported by the National Natural Science Foundation of China (No. 51075299).
文摘All-position welding is an important technology in energy sources, chemical, shipbuilding and other industries. When welding current is larger than 200 A, the molten metal tends to flow down due to the force of gravity. In order to "push" the molten metal into the weld, a new kind of U-frame excitation model, which could produce electromagnetic force to balance the gravity of the molten pool, was designed. The related parameters of the excitation model were simulated by Maxwell 3D, and the relationships between the parameters and the magnetic induction intensity were analyzed. Finally, the electromagnetic force in the molten pool was calculated, and the appropriate parameters of the U-frame excitation model were determined. The results of the simulation verify the feasibility of the all-position welding excitation model.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.