[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temp...[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.展开更多
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa...The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.展开更多
A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtaine...A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.展开更多
Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is j...Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.展开更多
High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than...High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...展开更多
A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD ...A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.展开更多
High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,mi...High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.展开更多
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carb...In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.展开更多
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events...A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events (EPLTE) in China.During the persistence of such anomalous circulations,the split flow over the inner Asian continent and the influent flow over the southeast-ern coast of China correspond well to the expanded and amplified Siberian high with tightened sea level pressure gradients and hence,a strong,cold advection over south-eastern China.The western Pacific subtropical high tends to expand northward during the early stages of most EPLTEs.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potenti...High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potential to maintain high performance at extreme temperatures.However,some problems like severe shuttling and safety issues at high temperatures or sluggish reaction kinetics and charge-transfer process at low temperatures decrease the performance and hinder their practical uses in extreme temperature conditions.Therefore,broadening the working temperature of LSB with stable electrochemical performance becomes a crucial topic.In this paper,the key stumbling blocks for high and low-temperature LSB are comprehensively discussed.The solutions from the aspects of electrolyte and electrode materials are discussed to solve the aggravating shuttle effect and thermal safety issues under high temperature and the sluggish reaction kinetics under low temperature.Moreover,some specific promising solutions to extend the operating temperature range of LSB are also proposed and highlighted,which provide potential research directions on the practical LSB application in future.展开更多
Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l...Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.展开更多
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific...Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati...The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
基金Supported by Gansu Province the Fifth Installment "Ten Plan"~~
文摘[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.
基金supported by National Natural Science Foundation(No.41272301 and No.42007171)Nature Fund of Hebei(No.D2021504034)Chinese Academy of Geological Sciences(No.YYWF201628).
文摘The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.
文摘A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.
基金financially supported by National Nature Science Foundation of China(No.50872080)Shanghai Special Foundation of Nanotechnology(No.1052nm07300)+2 种基金Shanghai Education Development Foundation(No.08SG41)Shanghai Leading Academic Disciplines(No.S30107)Innovational Foundation of Shanghai University
文摘Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.
基金Supported by Science and Technology Committee of Tianjin (No.06YFGPGX08400)Ministry of Science and Technology of China (No.2009GJF20022)Innovation Fund of Tianjin University
文摘High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...
文摘A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.
基金supported by the National Key R&D Program of China(No.2018YFD0900805)the Start up Foundation for Introducing Talent of Nanjing Univer-sity of Information Science and Technology。
文摘High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
文摘In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
基金supported by the National Key Technologies R&D Program of China (Grant No.2009BAC51B02)
文摘A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events (EPLTE) in China.During the persistence of such anomalous circulations,the split flow over the inner Asian continent and the influent flow over the southeast-ern coast of China correspond well to the expanded and amplified Siberian high with tightened sea level pressure gradients and hence,a strong,cold advection over south-eastern China.The western Pacific subtropical high tends to expand northward during the early stages of most EPLTEs.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金support from the National Key R&D Program of China(No.2021YFF0500600)National Natural Science Foundation of China(No.51932005 and 52022041)+1 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)Haihe Laboratory of Sustainable Chemical Transformations(No.YYJC202108)
文摘High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potential to maintain high performance at extreme temperatures.However,some problems like severe shuttling and safety issues at high temperatures or sluggish reaction kinetics and charge-transfer process at low temperatures decrease the performance and hinder their practical uses in extreme temperature conditions.Therefore,broadening the working temperature of LSB with stable electrochemical performance becomes a crucial topic.In this paper,the key stumbling blocks for high and low-temperature LSB are comprehensively discussed.The solutions from the aspects of electrolyte and electrode materials are discussed to solve the aggravating shuttle effect and thermal safety issues under high temperature and the sluggish reaction kinetics under low temperature.Moreover,some specific promising solutions to extend the operating temperature range of LSB are also proposed and highlighted,which provide potential research directions on the practical LSB application in future.
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22109160,22005297)the Dalian Innovation Support Plan for High Level Talents(2019RT09)+6 种基金the The Joint Fund of the Yulin University and the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019),DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2021M693126,2020M680995,2021M703145,2021M693127)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210311)the Plan for promoting innovative talents of Education Department of Liaoning Province(LCR2018015)the Shenyang Youth Science and Technology Project(RC200444)the Natural Science Foundation of Liaoning Province(2021-MS-234)。
文摘Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.
基金supported by the National Natural Science Foundation of China(No.41302131)the Special Fund for Fostering Major Projects at the China University of Mining and Technology(No.2014ZDP03)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB1600200in part by the Shaanxi Province Postdoctoral Research Project under grant 2023BSHEDZZ223+3 种基金in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102383101in part by the Shaanxi Province Qinchuangyuan High-Level Innovation and Entrepreneurship Talent Project under grant QCYRCXM-2023-112the Key Research and Development Program of Shaanxi Province under grant 2024GX-YBXM-442in part by the National Natural Science Foundation of China under grand 62373224.
文摘The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.