The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating f...The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating flux on cathode spots in the activating TIG welding.The characteristics and behaviors of cathode spots were investigated in activating TIG welding by the high-speed camera and the spectrograph.Three kinds of oxide(TiO_(2),SiO_(2),MnO_(2))and two halide(MnCl_(2),CaF_(2))activating fluxes are used in the activating TIG welding process.The results show that differ from the TIG welding,the oxide activating flux increases the number of cathode spots and decreases the velocity.The effect is the opposite for the halide activating flux.Moreover,the number of spots no longer varies with the current except TiO2 activating flux.As the temperature of the weld pool surface increases the spot moves away from the center.But this rule is not valid when silica and manganese compounds activating fluxes are used.The variation of cathode spots is caused by the oxide film reformed and the distribution of weld slag.The formation mechanism of cathode spots might be the impact of ions on the cathode surface and the strong electric field formed near the cathode surface.展开更多
An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced...An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced joining methods,hybrid laser arc welding,activated flux tungsten inert gas welding and friction stir welding,were selected and conducted to connect the thick plates.The feasibility of three joining methods,the microstructure and mechanical properties were compared,and the results have demonstrated that the sound joint was successfully produced using the selected parameters through friction stir welding.The obtained hardness and impact toughness of the weld zone were satisfying.In terms of activated flux tungsten inert gas welding,the crack will be created due to microstructural brittleness.And as for hybrid laser arc welding,the weld zone is narrow,and the addition of wire during welding for the top weld metal area leads to higher formation ratio of low-angle grain boundaries,which is beneficial to performance of the joint.However,there is still a weak area in the fusion line of the welded joint.The result has illustrated that the welding of innovative ultra-pure ferritic stainless steel thick plate by friction stir welding is feasible.展开更多
The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the ...The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.展开更多
The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investiga...The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.展开更多
The corrosion resistance behavior of TA2 pure titanium processed by tungsten inert gas(TIG)welding was investigated in artificial saliva solution at 37℃.By metallographic examination,electrochemical measurement techn...The corrosion resistance behavior of TA2 pure titanium processed by tungsten inert gas(TIG)welding was investigated in artificial saliva solution at 37℃.By metallographic examination,electrochemical measurement technology,and electrochemical impedance spectroscopy(EIS),the corrosion resistance of the base metal(BM),heat-affected zone(HAZ),and weld metal(WM)were investigated.Metallographic examination experiments show that welding process would cause the growth of grain size.In addition,phase change happens in the HAZ and WM.The change of grain size and phase would influence the generation of the original passive film.The electrochemical tests show that the BM,HAZ,and WM are all equipped with good corrosion resistance.The welded joint shows a better corrosion resistance than the original TA2.It is shown that the BM with the lowest corrosion potential and the biggest corrosion current has a worse corrosion resistance than WM as well as HAZ.Silver(Ag)nanoparticles can be distributed on the WM zone of Ti uniformly.The WM zone of Ti with Ag coating considerably enhances the antibacterial activity of Ti implants.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51965036).
文摘The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating flux on cathode spots in the activating TIG welding.The characteristics and behaviors of cathode spots were investigated in activating TIG welding by the high-speed camera and the spectrograph.Three kinds of oxide(TiO_(2),SiO_(2),MnO_(2))and two halide(MnCl_(2),CaF_(2))activating fluxes are used in the activating TIG welding process.The results show that differ from the TIG welding,the oxide activating flux increases the number of cathode spots and decreases the velocity.The effect is the opposite for the halide activating flux.Moreover,the number of spots no longer varies with the current except TiO2 activating flux.As the temperature of the weld pool surface increases the spot moves away from the center.But this rule is not valid when silica and manganese compounds activating fluxes are used.The variation of cathode spots is caused by the oxide film reformed and the distribution of weld slag.The formation mechanism of cathode spots might be the impact of ions on the cathode surface and the strong electric field formed near the cathode surface.
文摘An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced joining methods,hybrid laser arc welding,activated flux tungsten inert gas welding and friction stir welding,were selected and conducted to connect the thick plates.The feasibility of three joining methods,the microstructure and mechanical properties were compared,and the results have demonstrated that the sound joint was successfully produced using the selected parameters through friction stir welding.The obtained hardness and impact toughness of the weld zone were satisfying.In terms of activated flux tungsten inert gas welding,the crack will be created due to microstructural brittleness.And as for hybrid laser arc welding,the weld zone is narrow,and the addition of wire during welding for the top weld metal area leads to higher formation ratio of low-angle grain boundaries,which is beneficial to performance of the joint.However,there is still a weak area in the fusion line of the welded joint.The result has illustrated that the welding of innovative ultra-pure ferritic stainless steel thick plate by friction stir welding is feasible.
基金Project(51771160)supported by the National Natural Science Foundation of ChinaProject(2018JJ4048)supported by the Provincial and Municipal Joint Fund for Natural Science of Hunan Province,China
文摘The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.
基金Project(51375511) supported by the National Natural Science Foundation of ChinaProject(cstc2016jcyj A0167) supported by the Research Program of Basic Research and Frontier Technology of Chongqing of China+1 种基金Project(SF201602) supported by the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of ChinaProject(XJ201608) supported by the Key Industry Technology Innovation Funds of Science and Technology Development Board of Xiangcheng District of Suzhou of China
文摘The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.
基金the National Natural Science Foundation of China(No.81070871)。
文摘The corrosion resistance behavior of TA2 pure titanium processed by tungsten inert gas(TIG)welding was investigated in artificial saliva solution at 37℃.By metallographic examination,electrochemical measurement technology,and electrochemical impedance spectroscopy(EIS),the corrosion resistance of the base metal(BM),heat-affected zone(HAZ),and weld metal(WM)were investigated.Metallographic examination experiments show that welding process would cause the growth of grain size.In addition,phase change happens in the HAZ and WM.The change of grain size and phase would influence the generation of the original passive film.The electrochemical tests show that the BM,HAZ,and WM are all equipped with good corrosion resistance.The welded joint shows a better corrosion resistance than the original TA2.It is shown that the BM with the lowest corrosion potential and the biggest corrosion current has a worse corrosion resistance than WM as well as HAZ.Silver(Ag)nanoparticles can be distributed on the WM zone of Ti uniformly.The WM zone of Ti with Ag coating considerably enhances the antibacterial activity of Ti implants.