A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were ...A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.展开更多
Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes(LEDs) needs to be further quantitatively clarified. By incorporating current ...Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes(LEDs) needs to be further quantitatively clarified. By incorporating current crowding effect(CCE) into the conventional ABC model, we have theoretically and directly correlated the current diffusion and the internal quantum efficiency(IQE), light extraction efficiency(LEE), and external quantum efficiency(EQE) droop of the lateral LEDs.However, questions still exist for the vertical LEDs(V-LEDs). Here firstly the current diffusion length L_s(I) and L_s(II) have been clarified. Based on this, the influence of CCE on the EQE, IQE, and LEE of V-LEDs were investigated. Specifically to our V-LEDs with moderate series resistivity, L_s(III) was developed by combining L_s(I) and L_s(II), and the CCE effect on the performance of V-LEDs was investigated. The wall-plug efficiency(WPE) of V-LEDs ware investigated finally. Our works provide a deep understanding of the current diffusion status and the correlated efficiency droop in V-LEDs, thus would benefit the V-LEDs' chip design and further efficiency improvement.展开更多
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology o...To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes.展开更多
This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping w...This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.展开更多
We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a ...We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.展开更多
Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently w...Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements.The enhancement ratio of the light output power decreased as the Ga P layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for Ga P layer thicknesses of 0.5 μm, 1 μm, and 8 μm, respectively, when an AgNW network was included in Al Ga In P light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the Ga P layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.展开更多
In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In l...In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In lower frequency domain, injection potential barrier was the dominant effect to determine the luminescence intensity; with increased frequency, the influence of capacitance effect becomes dominant, which can be confirmed according to the investigations on stable EL of the AC-OLEDs. The results indicate that transient and stable EL can agree with each other perfectly. Besides, the stable EL reveals that the thinner device can take more effective capacitance effect.展开更多
The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid re...The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid reflective CBL not only plays the role of the CBL by enhancing current spreading but also plays the role of a reflector by preventing photons near the p electrode pad from being absorbed by a metal electrode. At a wavelength of 455 nm, a 1.5-pair of SiO2/TiO2 DBR and an A1 mirror (i.e. 1.5-pair DBR+A1) deposited on a p-GaN layer showed a normal-incidence reflectivity as high as 97.8%. With 20 mA current injection, it was found that the output power was 25.26, 24.45, 23.58 and 22.45 mW for the LED with a 1.5-pair DBR+AI CBL, a 3-pair DBR CBL, SiO2 CBL and without a CBL, respectively.展开更多
The factors influencing the current-voltage(I-V) characteristics of light-emitting diodes(LEDs) are investigated to reveal the connection of I-V characteristics under optical excitation and those under electrical ...The factors influencing the current-voltage(I-V) characteristics of light-emitting diodes(LEDs) are investigated to reveal the connection of I-V characteristics under optical excitation and those under electrical excitation.By inspecting the I-V curves under optical and electrical excitation at identical injection current,it has been found that the I-V curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the I-V characteristics under two diverse excitation ways will be the same.展开更多
This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current...This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.展开更多
A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthr...A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydrox- yquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually r...展开更多
Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy ...Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.展开更多
This work demonstrates high-performance and current crowding-free InGaN/GaN light-emitting diodes (LEDs) using an electrically-reverse-connected Schottky diode (SD) and an Mg-delta (δ) doped layer. Possible mec...This work demonstrates high-performance and current crowding-free InGaN/GaN light-emitting diodes (LEDs) using an electrically-reverse-connected Schottky diode (SD) and an Mg-delta (δ) doped layer. Possible mechanism of carrier transport at the interface between transparent conducting electrode (TCE) and p-GaN with the δ-doped layer is also investigated. Results show that the LED with the SD and Mg delta (δ)-doping layer yields lower series resistance, higher output power, and lower reverse leakage current compared to normal LEDs. In addition, unlike the normal LED, there is no occurrence for the current crowding effect in the proposed LED even at high current density of 380mA/cm2. These remarkable behaviours clearly indicate that the use of the SD and δ- doping in the p-GaN region is very promising to achieve high-brightness and excellent-reliability GaN-based LEDs.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11204009)the Natural Science Foundation of Beijing,China(Grant No.4142005)
文摘A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0406702)the Professorship Start-up Funding(Grant No.217056)+2 种基金the Innovation-Driven Project of Central South University,China(Grant No.2018CX001)the Project of State Key Laboratory of High-Performance Complex Manufacturing,Central South University,China(Grant No.ZZYJKT2018-01)Guangzhou Science&Technology Project of Guangdong Province,China(Grant Nos.201704030106 and 2016201604030035)
文摘Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes(LEDs) needs to be further quantitatively clarified. By incorporating current crowding effect(CCE) into the conventional ABC model, we have theoretically and directly correlated the current diffusion and the internal quantum efficiency(IQE), light extraction efficiency(LEE), and external quantum efficiency(EQE) droop of the lateral LEDs.However, questions still exist for the vertical LEDs(V-LEDs). Here firstly the current diffusion length L_s(I) and L_s(II) have been clarified. Based on this, the influence of CCE on the EQE, IQE, and LEE of V-LEDs were investigated. Specifically to our V-LEDs with moderate series resistivity, L_s(III) was developed by combining L_s(I) and L_s(II), and the CCE effect on the performance of V-LEDs was investigated. The wall-plug efficiency(WPE) of V-LEDs ware investigated finally. Our works provide a deep understanding of the current diffusion status and the correlated efficiency droop in V-LEDs, thus would benefit the V-LEDs' chip design and further efficiency improvement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60776047, 60836003, 60476021 and 60576003)
文摘To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes.
基金Project supported by the Key Project of Shanghai Education Committee (Grant No. 08ZZ42)Science and Technology Commission of Shanghai Municipal (Grant Nos. 08PJ14053,08DZ1140702 and 08520511200)
文摘This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.
基金Project supported by the Program for Changjiang Scholar and Innovation Research Team in Universities of China(Grant No.IRT0972)the International Science&Technology Cooperation Program of China(Grant No.2012DFR50460)+1 种基金the National Natural Scientific Foundation of China(Grant Nos.21071108,60976018,21101111,61274056,and 61205179)the Key Innovative Research Team in Science and Technology of Shangxi Province,China(Grant No.2012041011)
文摘We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400603)the National Natural Science Foundation of China(Grant No.61335004)
文摘Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements.The enhancement ratio of the light output power decreased as the Ga P layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for Ga P layer thicknesses of 0.5 μm, 1 μm, and 8 μm, respectively, when an AgNW network was included in Al Ga In P light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the Ga P layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.
文摘In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In lower frequency domain, injection potential barrier was the dominant effect to determine the luminescence intensity; with increased frequency, the influence of capacitance effect becomes dominant, which can be confirmed according to the investigations on stable EL of the AC-OLEDs. The results indicate that transient and stable EL can agree with each other perfectly. Besides, the stable EL reveals that the thinner device can take more effective capacitance effect.
文摘The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid reflective CBL not only plays the role of the CBL by enhancing current spreading but also plays the role of a reflector by preventing photons near the p electrode pad from being absorbed by a metal electrode. At a wavelength of 455 nm, a 1.5-pair of SiO2/TiO2 DBR and an A1 mirror (i.e. 1.5-pair DBR+A1) deposited on a p-GaN layer showed a normal-incidence reflectivity as high as 97.8%. With 20 mA current injection, it was found that the output power was 25.26, 24.45, 23.58 and 22.45 mW for the LED with a 1.5-pair DBR+AI CBL, a 3-pair DBR CBL, SiO2 CBL and without a CBL, respectively.
基金Project supported by the National Natural Science Foundation of China(No.61006053)the National Science Foundation ofCQ CSTC (No.CSTC 2008BB3156)
文摘The factors influencing the current-voltage(I-V) characteristics of light-emitting diodes(LEDs) are investigated to reveal the connection of I-V characteristics under optical excitation and those under electrical excitation.By inspecting the I-V curves under optical and electrical excitation at identical injection current,it has been found that the I-V curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the I-V characteristics under two diverse excitation ways will be the same.
文摘This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.
基金supported by National Science Foun-dation of China (Grant No. 60425101)Program for New CenturyExcellent Talents in University of Education Ministry of China(Grant No. NCET-06-0812)the Young Excellence Project ofUESTC (Grant No.060206.)
文摘A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydrox- yquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually r...
基金supported by the Key‐Area Research and Development Program of Guangdong Province(No.2019B010924003)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120030,No.2020A1515010449)+3 种基金Natural Science Basic Research Program of Shaanxi(Program No.2019JLP‐11)Shenzhen Fundamental Research Program(JCYJ20190808182803805)Shenzhen OLED Materials and Devices Technology Engineering Research Center([2018]1410)Shenzhen Key Laboratory of Shenzhen Science and Technology(ZDSYS_(2)0140509094114164).
文摘Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.
文摘This work demonstrates high-performance and current crowding-free InGaN/GaN light-emitting diodes (LEDs) using an electrically-reverse-connected Schottky diode (SD) and an Mg-delta (δ) doped layer. Possible mechanism of carrier transport at the interface between transparent conducting electrode (TCE) and p-GaN with the δ-doped layer is also investigated. Results show that the LED with the SD and Mg delta (δ)-doping layer yields lower series resistance, higher output power, and lower reverse leakage current compared to normal LEDs. In addition, unlike the normal LED, there is no occurrence for the current crowding effect in the proposed LED even at high current density of 380mA/cm2. These remarkable behaviours clearly indicate that the use of the SD and δ- doping in the p-GaN region is very promising to achieve high-brightness and excellent-reliability GaN-based LEDs.