期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
1
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
下载PDF
Fast alternating direction method of multipliers for total-variation-based image restoration 被引量:1
2
作者 陶敏 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期379-383,共5页
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo... A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms. 展开更多
关键词 total variation DECONVOLUTION alternating direction method of multiplier
下载PDF
Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography 被引量:6
3
作者 张瀚铭 王林元 +3 位作者 闫镔 李磊 席晓琦 陆利忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期582-589,共8页
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac... Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem. 展开更多
关键词 linear scan CT image reconstruction total variation alternating direction method
下载PDF
Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system 被引量:4
4
作者 Chongkun Xia Chengli Su +1 位作者 Jiangtao Cao Ping Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期597-605,共9页
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ... Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application. 展开更多
关键词 Electrical capacitance tomography Image reconstruction Compressed sensing Alternating direction method of multipliers Two-phase flow
下载PDF
Nested Alternating Direction Method of Multipliers to Low-Rank and Sparse-Column Matrices Recovery 被引量:5
5
作者 SHEN Nan JIN Zheng-fen WANG Qiu-yu 《Chinese Quarterly Journal of Mathematics》 2021年第1期90-110,共21页
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ... The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive. 展开更多
关键词 Convex optimization Variational inequality problem Alternating direction method of multipliers Low-rank representation Subspace recovery
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
6
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 Three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
Linearized Proximal Alternating Direction Method of Multipliers for Parallel Magnetic Resonance Imaging
7
作者 Benxin Zhang Zhibin Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期763-769,共7页
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu... In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 Alternating direction method Barzilai-Borwein stepsize parallel magnetic resonance imaging total variation image reconstruction
下载PDF
Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers
8
作者 Ting Bai Shaoyuan Li Yuanyuan Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1336-1344,共9页
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel... This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics. 展开更多
关键词 Alternating direction method of multipliers(ADMM)algorithm distributed control model predictive control(MPC) reconfigurable architecture systems.
下载PDF
Multichannel Blind CT Image Restoration via Variable Splitting and Alternating Direction Method
9
作者 孙云山 张立毅 +1 位作者 张海燕 张经宇 《Transactions of Tianjin University》 EI CAS 2015年第6期524-532,共9页
Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point ... Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence. 展开更多
关键词 blind image restoration variable splitting alternating direction method medical CT image
下载PDF
Distributed Alternating Direction Method of Multipliers for Multi-Objective Optimization
10
作者 Hui Deng Yangdong Xu 《Advances in Pure Mathematics》 2022年第4期249-259,共11页
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor... In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm. 展开更多
关键词 Alternating direction method of Multipliers Distributed Algorithm Multi-Objective Optimization Multi-Agent System
下载PDF
Two-level Bregmanized method for image interpolation with graph regularized sparse coding 被引量:1
11
作者 刘且根 张明辉 梁栋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期384-388,共5页
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne... A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 image interpolation Bregman iterative method graph regularized sparse coding alternating direction method
下载PDF
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
12
作者 Kevin Bui Yifei Lou +1 位作者 Fredrick Park Jack Xin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1369-1405,共37页
In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of... In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method. 展开更多
关键词 Image segmentation Non-convex optimization Mumford-Shah(MS)model Alternating direction method of multipliers(ADMMs) Proximal operator
下载PDF
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
13
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural Network Random Vector Functional-Link (RVFL) Network Alternating direction method of Multipliers (ADMM)
下载PDF
Two-stage ADMM-based distributed optimal reactive power control method for wind farms considering wake effects 被引量:3
14
作者 Zhenming Li Zhao Xu +2 位作者 Yawen Xie Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期251-260,共10页
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o... Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method. 展开更多
关键词 Two-stage optimization Reactive power optimization Grid-connected wind farms Alternating direction method of multipliers(ADMM)
下载PDF
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
15
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction 被引量:1
16
作者 张明辉 尹子瑞 +2 位作者 卢红阳 吴建华 刘且根 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期434-441,共8页
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ... The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding Bregman iterative method dictionary updating alternating direction method
下载PDF
Two-Level Bregman Method for MRI Reconstruction with Graph Regularized Sparse Coding
17
作者 刘且根 卢红阳 张明辉 《Transactions of Tianjin University》 EI CAS 2016年第1期24-34,共11页
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the... In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding dictionary learning Bregman iterative method alternating direction method
下载PDF
High accuracy compact finite difference methods and their applications
18
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
下载PDF
AN ADI GALERKIN METHOD WITH MOVING FINITE ELEMENT SPACES FOR A CLASS OF SECOND-ORDER HYPERBOLIC EQUATIONS
19
作者 孙同军 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期45-58,共14页
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
关键词 alternating direction implicit method moving finite element second order hyperbolic equations.
下载PDF
An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
20
作者 Mengya Su Zhihao Ren Zhiyue Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期739-776,共38页
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc... Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis. 展开更多
关键词 Viscous wave equation alternating direction implicit finite volume element method error estimates L2 norm
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部