Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute ...Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.展开更多
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca...The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.展开更多
A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibrati...A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibration.A new spin valve was designed in order to fulfill dynamic state requirements of the oscillation cylinder.Parametric analysis was carried out by establishing mathematic model.Then,the relationships among the structure of valve port and the frequency,amplitude,output shock force of the cylinder were researched.An experimental device of the electrohydraulic exciter was established to validate the theoretical results.The signals were acquired by AVANT dynamic signal analyser of vibration.The results show that new tamping device can satisfy all kinds of complex working conditions with the flexible adjustment of frequency and amplitude.展开更多
A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for id...A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for identifying the dynamic coefficients of journal bearings in high-speed grinding spindles. A linear force control method is developed based on PID controller. The influence of amplitude and frequency of current, misalignment and rotational speed on magnetic field and excitation force is investigated based on two-dimensional finite element analysis. The electromagnetic excitation force is measured with the auxiliary coils and calibrated by load cells. The design is validated by the experimental results. Theoretical and experimental investigations show that the proposed design can accurately generate linear excitation force with sufficiently large amplitude and higher signal to noise ratio. Moreover, the fluctuations in force amplitude are reduced to a greater extent with the designed linear control method even when the air gap changes due to the rotor vibration at high-speed conditions. Besides, it is possible to apply various types of excitations: constant, synchronous, and non-synchronous excitation forces based on the proposed linear control method. This exciter can be used as linear-force exciting and controlling system for dynamic performance study of different high-speed rotor-bearing systems.展开更多
A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-ex...A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.展开更多
The exciter component in a panel loudspeaker has a profound effect on the overall performance of the system. The equivalent circuit analysis of the combination of giant magnetostrictive material exciter and distribute...The exciter component in a panel loudspeaker has a profound effect on the overall performance of the system. The equivalent circuit analysis of the combination of giant magnetostrictive material exciter and distributed mode panel is introduced and how exciter parameters influence panel lo'udspeaker' s performance is discussed. Numerical predictions are given in order to show how these influences are manifested.展开更多
We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangu...We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.展开更多
Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise o...Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise of excitation and inhibition,known as the excitation/inhibition(E/I)balance,is crucial for proper brain function.The E/I balance is highly dynamic and shifts across different brain states:wakefulness primarily augments excitatory activity,while sleep promotes a decrease in excitation and an increase in inhibition(Bridi et al.,2020).Neuronal activity during various brain states is primarily regulated by neurotransmitters(Schiemann et al.,2015),alongside non-synaptic mechanisms that operate on a slower timescale.The non-synaptic mechanisms are many,with the ionic composition of the extracellular space playing a significant role;altering extracellular ion concentrations affects sleep,arousal,electroencephalogram patterns,and behavioral states(Ding et al.,2016).展开更多
Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser puls...Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.展开更多
Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resona...Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.展开更多
Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature...Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).展开更多
Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix me...Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
When we carry out lower hybrid wave heating and current driving plasma experiment at tokamak, we need mega-watt order of microwave power. The microwave signal at frequency of 2450 MHz is generated by a microwave ex...When we carry out lower hybrid wave heating and current driving plasma experiment at tokamak, we need mega-watt order of microwave power. The microwave signal at frequency of 2450 MHz is generated by a microwave exciter. According to the experiment's demands, the microwave exciter must provide output power of 1.5~ 2. 5 W with stabilized frequency and amplitude tobe used as the klystron input. Being amplified by the klystron, the microwave signal is transmitted through the transmitting system to the antenna and is emitted into the HL-2A tokamak. So we can see that the microwave exciter's function is very important to the lower hybrid wave heating and current driving plasma experiment.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
To carry out lower hybrid wave heating and current drive plasma experiment on tokamak, we need mega-watt order of microwave power generated by the parallel-running klystrons. Those klystrons must be driven by the micr...To carry out lower hybrid wave heating and current drive plasma experiment on tokamak, we need mega-watt order of microwave power generated by the parallel-running klystrons. Those klystrons must be driven by the microwave exciter. Now our microwave exciter is used for many years and its performance is decreased very much. It can not satisfy any more the hybrid wave heating and current drive plasma experiment. So we set out to design a new microwave exciter that is consist of the microwave solid components, amplitudestabilization control, modularization design with multitude-outputs, microwave phase control in order to satisfy the demand of the different work in the hybrid wave heating and current drive plasma experiment.展开更多
基金supported by the Key Program (Grant. No. 50635010)General Program (Grant. No. 50975018) of National Natural Science Foundation of China
文摘Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.
基金supported by National Natural Science Foundation of China(Grant No.50675204)Zhejiang Provincial Natural Science Foundation of China(Grant No.D1080667)Open Foundation of the State Key Lab of Fluid Power Transmission and Control of Zhejiang University,China(Grant No.GZKF-2008005)
文摘The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.
基金Projects(50975252,51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program of ChinaProject(GZKF-201312)supported by Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control,China
文摘A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibration.A new spin valve was designed in order to fulfill dynamic state requirements of the oscillation cylinder.Parametric analysis was carried out by establishing mathematic model.Then,the relationships among the structure of valve port and the frequency,amplitude,output shock force of the cylinder were researched.An experimental device of the electrohydraulic exciter was established to validate the theoretical results.The signals were acquired by AVANT dynamic signal analyser of vibration.The results show that new tamping device can satisfy all kinds of complex working conditions with the flexible adjustment of frequency and amplitude.
基金Supported by National Natural Science Foundation of China(Grant Nos.51505384,51575421)Fundamental Research Funds for the Central Universities,China(Grant No.3102015JCS05007)Aeronautical Science Foundation of China(Grant No.20140453008)
文摘A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for identifying the dynamic coefficients of journal bearings in high-speed grinding spindles. A linear force control method is developed based on PID controller. The influence of amplitude and frequency of current, misalignment and rotational speed on magnetic field and excitation force is investigated based on two-dimensional finite element analysis. The electromagnetic excitation force is measured with the auxiliary coils and calibrated by load cells. The design is validated by the experimental results. Theoretical and experimental investigations show that the proposed design can accurately generate linear excitation force with sufficiently large amplitude and higher signal to noise ratio. Moreover, the fluctuations in force amplitude are reduced to a greater extent with the designed linear control method even when the air gap changes due to the rotor vibration at high-speed conditions. Besides, it is possible to apply various types of excitations: constant, synchronous, and non-synchronous excitation forces based on the proposed linear control method. This exciter can be used as linear-force exciting and controlling system for dynamic performance study of different high-speed rotor-bearing systems.
基金supported by National Natural Science Foundation of China under Grant No.50775154Shanxi Province Science Foundation of China under Grant No.2011011026-2
文摘A hydraulic exciting system with a wave exciter has been constructed in order to study the hydraulic vibra- tion law. The system consists of an oil source, wave-exciter and oil cylinder, and is controlled by a wave-exciter. The working principle of the hydraulic exciting system and wave exciter has been analyzed, and its excitation process has been illustrated. The law of every pipe's pressure fluctuation of the system is obtained by experiment. The theo- retical analysis and experimental data prove that the pipeline pressure periodically changes and the pipeline pressure fluctuation frequency is independently controlled by the excitation frequency of the wave-exciter. Every pipelinc's pressure wave is produced by system flow fluctuation and water hammer coupling. The pressure fluctuation rules of the system provide a theoretical basis for the study of the associated liberation system.
文摘The exciter component in a panel loudspeaker has a profound effect on the overall performance of the system. The equivalent circuit analysis of the combination of giant magnetostrictive material exciter and distributed mode panel is introduced and how exciter parameters influence panel lo'udspeaker' s performance is discussed. Numerical predictions are given in order to show how these influences are manifested.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974331 and 12374479)。
文摘We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.
文摘Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise of excitation and inhibition,known as the excitation/inhibition(E/I)balance,is crucial for proper brain function.The E/I balance is highly dynamic and shifts across different brain states:wakefulness primarily augments excitatory activity,while sleep promotes a decrease in excitation and an increase in inhibition(Bridi et al.,2020).Neuronal activity during various brain states is primarily regulated by neurotransmitters(Schiemann et al.,2015),alongside non-synaptic mechanisms that operate on a slower timescale.The non-synaptic mechanisms are many,with the ionic composition of the extracellular space playing a significant role;altering extracellular ion concentrations affects sleep,arousal,electroencephalogram patterns,and behavioral states(Ding et al.,2016).
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.12234020,11874066,12274461,and 11974426)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193).
文摘Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.
基金Beijing Normal University was supported by the Fundamental Research Funds for the Central Universitiesthe National Key Projects for Research and Development of China(No.2021YFA1400400)+1 种基金the National Natural Science Foundation of China(Grant Nos.12174029 and 11922402)the neutron beamtimes from J-PARC(Proposal No.2019A0002)。
文摘Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.
基金partly supported by the National Key R&D Program of China(Grant No.2023YFA1606700)partly supported by the National Key R&D Program of China(Grant No.2024YFE0105200)+6 种基金supported by the Natural Science Foundation of Henan(Grant Nos.232300421140 and 222300420554)the National Natural Science Foundation of China(Grant Nos.12475086,12192263,12205075,12175239,12221005,12075288,and 12361141819)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Grant No.NLK2021-08)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.ZY22096024)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the Chinese Academy of Sciences(Grant No.YSBR-101)the Youth Innovation Promotion Association of CAS。
文摘Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).
基金Project supported by the National Natural Science Foundation of China (Grant No.11974253)。
文摘Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
文摘When we carry out lower hybrid wave heating and current driving plasma experiment at tokamak, we need mega-watt order of microwave power. The microwave signal at frequency of 2450 MHz is generated by a microwave exciter. According to the experiment's demands, the microwave exciter must provide output power of 1.5~ 2. 5 W with stabilized frequency and amplitude tobe used as the klystron input. Being amplified by the klystron, the microwave signal is transmitted through the transmitting system to the antenna and is emitted into the HL-2A tokamak. So we can see that the microwave exciter's function is very important to the lower hybrid wave heating and current driving plasma experiment.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
文摘To carry out lower hybrid wave heating and current drive plasma experiment on tokamak, we need mega-watt order of microwave power generated by the parallel-running klystrons. Those klystrons must be driven by the microwave exciter. Now our microwave exciter is used for many years and its performance is decreased very much. It can not satisfy any more the hybrid wave heating and current drive plasma experiment. So we set out to design a new microwave exciter that is consist of the microwave solid components, amplitudestabilization control, modularization design with multitude-outputs, microwave phase control in order to satisfy the demand of the different work in the hybrid wave heating and current drive plasma experiment.