[Objective] The aim was to explore salt-resistant Spartina alterniflora and high-yield rice with germplasm resource in order to create new salt-resistant rice species with dual-purpose of food and forage. [Method] Fro...[Objective] The aim was to explore salt-resistant Spartina alterniflora and high-yield rice with germplasm resource in order to create new salt-resistant rice species with dual-purpose of food and forage. [Method] From 2009 to 2011, re- searches on distant hybridization of Spartina alterniflora and Oryza Sativa have been conducted with method of distant hybridization breeding. On the other hand, break- through and combination techniques (four selected one) were adopted to find the new rice species, including techniques of planting and selection in seashore, cyto- logical detection and selection, phenotype selection of backcross, and molecular marker assisted selection. [Result] Success rate of distant hybridization from 2009 to 2010 was 1.39%. RAPD molecular identification of 7C14 and rice female parent of Zhongxiang No.l, seed 2 was carried on with distant hybridization of male parent of Spartina altemiflora (H). The results showed that bands same with Spartina alterni- flora parents were found in RH-1-10K205-7C14xH, RH-2-8K157-7C14xH, and RH-13- 9H5-Zhongxaing No.1 xH. Considering absent situation in rice parents, distant hy- bridization strains above were found with same parental genetic element as Spartina alterniflora. Female parent of rice 7K339, however, was under RAPD molecular identification with male parent of Spartina alterniflora. The result showed that bands same with Spartina alterniflora parents were found in RH-5-10K215, RH-6-8K48, RH- 12-9H9, RH-14-9H8 and RH-16-9H28. Considering absent situation in rice parents, distant hybridization strains above were found with same parental genetic element as Spartina altemiflora. Rest hybrid strains were found variance with Spartina alterniflora parents and rice parents in varying degrees. [Conclusion] New and excellent rice species of dual-purpose solves problem not only about salt-resistant species badly needed in coastal development and treatment of saline and alkaline land, but about fine fodder and roughage for herbivore, as well. What's more, this is of scientific significance in recourse utilization, efficiency improvement in agriculture, food security, and cultivation strategy.展开更多
基金Supported by National Natural Science Foundation of China(31072064)Foundation Project of Self-reliant Innovation for Agricultural Science and Technology,Supporting Project for Exploration and Research of Jiangsu Province in2011(TCX(11)4133,CX(11)4060)~~
文摘[Objective] The aim was to explore salt-resistant Spartina alterniflora and high-yield rice with germplasm resource in order to create new salt-resistant rice species with dual-purpose of food and forage. [Method] From 2009 to 2011, re- searches on distant hybridization of Spartina alterniflora and Oryza Sativa have been conducted with method of distant hybridization breeding. On the other hand, break- through and combination techniques (four selected one) were adopted to find the new rice species, including techniques of planting and selection in seashore, cyto- logical detection and selection, phenotype selection of backcross, and molecular marker assisted selection. [Result] Success rate of distant hybridization from 2009 to 2010 was 1.39%. RAPD molecular identification of 7C14 and rice female parent of Zhongxiang No.l, seed 2 was carried on with distant hybridization of male parent of Spartina altemiflora (H). The results showed that bands same with Spartina alterni- flora parents were found in RH-1-10K205-7C14xH, RH-2-8K157-7C14xH, and RH-13- 9H5-Zhongxaing No.1 xH. Considering absent situation in rice parents, distant hy- bridization strains above were found with same parental genetic element as Spartina alterniflora. Female parent of rice 7K339, however, was under RAPD molecular identification with male parent of Spartina alterniflora. The result showed that bands same with Spartina alterniflora parents were found in RH-5-10K215, RH-6-8K48, RH- 12-9H9, RH-14-9H8 and RH-16-9H28. Considering absent situation in rice parents, distant hybridization strains above were found with same parental genetic element as Spartina altemiflora. Rest hybrid strains were found variance with Spartina alterniflora parents and rice parents in varying degrees. [Conclusion] New and excellent rice species of dual-purpose solves problem not only about salt-resistant species badly needed in coastal development and treatment of saline and alkaline land, but about fine fodder and roughage for herbivore, as well. What's more, this is of scientific significance in recourse utilization, efficiency improvement in agriculture, food security, and cultivation strategy.