期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Design of Adaptive Fuzzy PID Altitude Control System for Unmanned Aerial Vehicle
1
作者 石刚 杨树兴 +1 位作者 敬亚兴 徐勇 《Journal of Beijing Institute of Technology》 EI CAS 2008年第1期58-61,共4页
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be d... Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters. 展开更多
关键词 unmanned aerial vehicle ADAPTIVE fuzzy PID altitude control system
下载PDF
Adaptive neural network based sliding mode altitude control for a quadrotor UAV 被引量:3
2
作者 Hadi RAZMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2654-2663,共10页
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ... Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results. 展开更多
关键词 adaptive sliding mode controller analog neural network(ANN) altitude control of quadrotor parametric uncertainty
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
3
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(GWO)
下载PDF
An Improved Nonlinear Dynamic Inversion Method for Altitude and Attitude Control of Nano Quad-Rotors under Persistent Uncertainties 被引量:1
4
作者 Chen Meili Wang Yuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第3期483-493,共11页
Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model great... Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model greatly restrains its application on quad-rotors,especially nano quad-rotors(NQRs).NQRs are easy to be influenced by uncertainties such as model uncertainties(mainly from complicated aerodynamic interferences,strong coupling in roll-pitch-yaw channels and inaccurate aerodynamic prediction of rotors)and external uncertainties(mainly from winds or gusts),particularly persistent ones.Therefore,developing accurate model for altitude and attitude control of NQRs is difficult.To solve this problem,in this paper,an improved nonlinear dynamic inversion(INDI)method is developed,which can reject the above-mentioned uncertainties by estimating them and then counteracting in real time using linear extended state observer(LESO).Comparison with the traditional NDI(TNDI)method was carried out numerically,and the results show that,in coping with persistent uncertainties,the INDI-based method presents significant superiority. 展开更多
关键词 nonlinear dynamic inversion extended state observer nano quad-rotor uncertainties rejection altitude control attitude control
下载PDF
Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles 被引量:12
5
作者 Chaoxu Mu Qun Zong +1 位作者 Bailing Tian Wei Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期45-55,共11页
In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to... In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to make that the continuous sliding mode controller has the property of disturbance rejection. Due to continuous terms replacing the discontinuous term of traditional sliding mode control, switching modes of velocity and altitude firstly arrive at small regions with respect to disturbance observation errors. Switching modes keep zero and velocity and altitude asymptotically converge to their reference commands after disturbance observation errors disappear. Simulation results have proved the proposed method can guarantee the tracking of velocity and altitude with continuous sliding mode control laws, and also has the fast convergence rate and robustness. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS altitude control controllers Disturbance rejection ERRORS Hypersonic aerodynamics Hypersonic vehicles Robustness (control systems) Vehicles
下载PDF
Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle 被引量:4
6
作者 Delong Hou Qing Wang Chaoyang Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第2期186-197,共12页
This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and a... This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and altitude in the presence of immeasurable states, uncertainties and varying flight conditions. A novel reduced order fuzzy observer is proposed to estimate the immeasurable states. Based on the information of observer and the measured states, a new robust output feedback controller combining dynamic surface theory and fuzzy logic system is proposed for airbreathing hypersonic vehicle. The closedloop system is proved to be semi-globally uniformly ultimately bounded (SUUB), and the tracking error can be made small enough by choosing proper gains of the controller, filter and observer. Simulation results from the full nonlinear vehicle model illustrate the effectiveness and good performance of the proposed control scheme. © 2014 Chinese Association of Automation. 展开更多
关键词 altitude control Feedback control Fuzzy logic Hypersonic aerodynamics Hypersonic vehicles Nonlinear feedback Robust control Tracking (position) Uncertainty analysis Vehicles
下载PDF
Design of an Executable ANFIS-based Control System to Improve the Attitude and Altitude Performances of a Quadcopter Drone 被引量:3
7
作者 Mohammad Al-Fetyani Mohammad Hayajneh Adham Alsharkawi 《International Journal of Automation and computing》 EI CSCD 2021年第1期124-140,共17页
Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these... Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these vehicles through low-cost sensing solutions and the design of executable and robust control techniques.Due to high nonlinearities,strong couplings and under-actuation,the control design process of a quadcopter is a rather challenging task.Therefore,the main objective of this work is demonstrated through two main aspects.The first is the design of an adaptive neuro-fuzzy inference system(ANFIS)controller to develop the attitude and altitude of a quadcopter.The second is to create a systematic framework for implementing flight controllers in embedded systems.A suitable model of the quadcopter is also developed by taking into account aerodynamics effects.To show the effectiveness of the ANFIS approach,the performance of a well-trained ANFIS controller is compared to a classical proportional-derivative(PD)controller and a properly tuned fuzzy logic controller.The controllers are compared and tested under several different flight conditions including the capability to reject external disturbances.In the first stage,performance evaluation takes place in a nonlinear simulation environment.Then,the ANFIS-based controllers alongside attitude and position estimators,and precision landing algorithms are implemented for executions in a real-time autopilot.In precision landing systems,an IR-camera is used to detect an IR-beacon on the ground for precise positioning.Several flight tests of a quadcopter are conducted for results validation.Both simulations and experiments demonstrated superior results for quadcopter stability in different flight scenarios. 展开更多
关键词 Quadcopter proportional integral derivate(PID)control fuzzy control adaptive neuro-fuzzy altitude control attitude control
原文传递
Decoupling Trajectory Tracking for Gliding Reentry Vehicles 被引量:5
8
作者 Zixuan Liang Zhang Ren Xingyue Shao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期115-120,共6页
A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system. Function relations between state variables and control variables are analyzed. To re... A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system. Function relations between state variables and control variables are analyzed. To reduce the coupling between control channels, the multiple-input multiple-output (MIMO) tracking system is separated into a series of two single-input single-output (SISO) subsystems. Tracking laws for both velocity and altitude are designed based on the sliding mode control (SMC). The decoupling approach is verified by the Monte Carlo simulations, and compared with the linear quadratic regulator (LQR) approach in some specific conditions. Simulation results indicate that the decoupling approach owns a fast convergence speed and a strong anti-interference ability in the trajectory tracking. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS altitude control Channel estimation Hypersonic vehicles Intelligent systems MIMO systems Monte Carlo methods Sliding mode control Telecommunication repeaters Trajectories Vehicles
下载PDF
More Detailed Disturbance Measurement and Active Disturbance Rejection Altitude Control for a Flapping Wing Robot Under Internal and External Disturbances 被引量:3
9
作者 Jiawang Mou Weiping Zhang +2 位作者 Kexin Zheng Yao Wang Chaofeng Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1722-1735,共14页
With the goal of designing a biologically inspired robot that can hold a stable hover under internal and external disturbances.We designed a tailless Flapping-wing Micro Aerial Vehicle(FMAV)with onboard 3D velocity pe... With the goal of designing a biologically inspired robot that can hold a stable hover under internal and external disturbances.We designed a tailless Flapping-wing Micro Aerial Vehicle(FMAV)with onboard 3D velocity perception.In this way,the wind disturbance caused by the relative motion of the FMAV can be quantified in real time based on the established altitudinal dynamics model.For the rest of the total disturbance,an active disturbance rejection controller is proposed to estimate and suppress those disturbances.In comparison with the traditional PID controller,this proposed approach has been validated.The results show that,in the hovering flight with the internal unmodeled dynamics,the root-mean-square of height controlled is only 2.53 cm.Even with the different weights of loads mounting on the FMAV,the ascending trajectory of flights remains impressively consistent.In the forward flight with the external disturbance,the root-mean-square error of height controlled is 2.78 cm.When the FMAV flies over a ladder introducing an abrupt external disturbance,the maximum overshoot is only half of that controlled by the PID controller.To our best knowledge,this is the first demonstration of FMAVs with the capability of sensing motion-generated wind disturbance onboard and handling the internal and external disturbances in hover flight. 展开更多
关键词 Bionic robot Flapping wing 3D velocity measurement Disturbance estimation and rejection altitude control
原文传递
Robust control for an unmanned helicopter with constrained flapping dynamics 被引量:6
10
作者 Rong LI Mou CHEN Qingxian WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第11期2136-2148,共13页
In this paper, a neural network based adaptive prescribed performance control scheme is proposed for the altitude and attitude tracking system of the unmanned helicopter in the presence of state and output constraints... In this paper, a neural network based adaptive prescribed performance control scheme is proposed for the altitude and attitude tracking system of the unmanned helicopter in the presence of state and output constraints. For handling the state constraints, the barrier Lyapunov function and the saturation function are employed. And, the prescribed performance method is used to deal with the flapping angle constraints for the unmanned helicopter. It is proved that the proposed control approach can ensure that all the signals of the resulting closed-loop system are bounded, and the tracking errors are within the prescribed performance bounds for all time. The numerical simulation is given to illustrate the performance of the proposed scheme. 展开更多
关键词 altitude control Attitude control Barrier Lyapunov function control constraint Prescribed performance Unmanned helicopter
原文传递
Passive attitude stabilization of ionic-wind-powered micro air vehicles
11
作者 Hengyu ZHANG Jiaming LENG +2 位作者 Zhiwei LIU Mingjing QI Xiaojun YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期412-419,共8页
The ionic-wind-powered Micro Air Vehicles(MAVs)can achieve a higher thrust-toweight ratio than other MAVs.However,this kind of MAV has not yet achieved controlled flight because of the unstable thrust produced by the ... The ionic-wind-powered Micro Air Vehicles(MAVs)can achieve a higher thrust-toweight ratio than other MAVs.However,this kind of MAV has not yet achieved controlled flight because of the unstable thrust produced by the ionic wind and the dynamic instability related to the small size.In this paper,a passive attitude stabilization method of the ionic-wind-powered MAV using air dampers is introduced.The key factors that influence the performance of the air dampers,including the layout,position,and area of the air dampers,are theoretically studied.The appropriate optimal position of the air dampers is also obtained by Monte Carlo stochastic simulations.Then the proposed passive attitude stabilization method is applied to the ionic-wind-powered MAVs of different wingspan(2 cm and 6.3 cm).Finally,the experimental results show that using the proposed method,attitude stabilization is achieved for the first time for the ionic-wind-powered MAV.Moreover,the altitude control of an ionic-wind-powered MAV with a wingspan of 6.3 cm is also demonstrated. 展开更多
关键词 Air dampers altitude control Ionic wind propulsion Micro air vehicle Monte Carlo methods STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部