The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ...The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.展开更多
The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based on two-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS347...The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based on two-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS3478 in the northern Tibetan Plateau during the experimental period of CEOP/CAMP-Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau). As a double-variable (solar altitude angle and soil moisture) function, surface albedo varies inconspicuously with any single factor. By using the method of approximately separating the double-variable function into two, one-factor functions (product and addition), the relationship of albedo with these two factors presents much better. The product and additional empirical formulae of albedo are then preliminarily fitted based on long-term experimental data. By comparison with observed values, it is found that the parameterization formulae fitted by using observational data are mostly reliable and their correlation coefficients are both over 0.6. The empirical formulae of albedo though, for the northern Tibetan Plateau, need to be tested by much more representative observational data with the help of numerical models and the retrieval of remote sensing data. It is practical until it is changed into effective parameterization formulae representing a grid scale in models.展开更多
The variation in altitude density function (ADF) of the surface topography of mild steel during electrochemical polishing (ECP) was investigated, and the mechanism of the variation of surface roughness with polish...The variation in altitude density function (ADF) of the surface topography of mild steel during electrochemical polishing (ECP) was investigated, and the mechanism of the variation of surface roughness with polishing time was analyzed. The results show that the variation trend of ADF with polishing time is flat-steep-flat; the variation of surface roughness results in the different distri- butions of surface current density, and there is a fine surface smoothness in the special period of ECP from 4 to 8 s.展开更多
For composite electromagnetic(EM)scattering from rough surface and target above it in near-field condition,modified shooting and bouncing ray(SBR)method and integral equation method(IEM),which are analytic methods com...For composite electromagnetic(EM)scattering from rough surface and target above it in near-field condition,modified shooting and bouncing ray(SBR)method and integral equation method(IEM),which are analytic methods combined with two-scale model for rough surface,are proposed to solve the composite near-field scattering problems.And the modified method is verified in effectiveness and accuracy by comparing the simulation results with measured results.Finally,the composite near-fielding scattering characteristics of a slanted plane and rough water surface below are obtained by using the proposed methods,and the dynamic tendency of composite scattering characteristics versus near-fielding distance is analyzed,which may have practical contribution to engineering programs in need of radar targets near-field characteristics under extra-low-altitude conditions.展开更多
During a research cruise over the Pacific Ocean in 1989, solar irradiance was measured with a broad-band pyranometer along the cruise track. Cloud cover was photographed with an all-sky time-lapse came ra. Cloud types...During a research cruise over the Pacific Ocean in 1989, solar irradiance was measured with a broad-band pyranometer along the cruise track. Cloud cover was photographed with an all-sky time-lapse came ra. Cloud types were observed and recorded. The data show that both the types and the amounts of clouds affect radiation fluxes on the sea surface. For low-level and middle-level clouds, the correlations (r) between measured irradiance (in Percent of calculated maximum irradiance) and cloud amount (in fraction of sky) were significant: r=-0. 79 and - 0. 66, respectively. For high-level clouds, the correlation was not significant: r=-0. 21. The results indicate that cloud shortwave forcing is a major modifier of the earth's surface insolation and change of cloud amount may affect global climate.展开更多
To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the fi...To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the finite element method (FEM) is developed. The conformal perfectly matched layer (PML), as the truncation boundary of the FEM, is employed to reduce the reflection error of planar PML in conventional FEM. Numerical code of our FEM is examined by available solution of the forward backward iterative (FBM) method. Bistatic and back-scattering from composite model of a target above random rough sea surface generated by Monte Carlo realization, and functional dependence upon the sea surface wind speed, target altitude, incident and scattering angles, etc. are numerically simulated and discussed. This paper presents a numerical description of the observation principle and physical insight associated with the coupling interactions of a complex volumetric target and random rough sea surface.展开更多
Landscape elements in residential areas can effectively improve the outdoor thermal environment,with different outcomes depending on the climate conditions.This study explores how the ground surface and shading proper...Landscape elements in residential areas can effectively improve the outdoor thermal environment,with different outcomes depending on the climate conditions.This study explores how the ground surface and shading properties affect the outdoor thermal environment in a high-altitude plateau climate where few studies have been conducted.The measurements were conducted during summer and winter in a residential area in Lhasa,Tibet.Without natural shading such as trees,there is a positive correlation between Sky-view factor(SVF)and Physiological equivalent temperature(PET)during winter and a negative correlation during summer.When SVF exceeds 0.65 in summer,it may cause human discomfort.Compared to artificial shading such as a tensioned membrane,deciduous trees are superior at improving human comfort,as they can increase PET by 10.56℃ in winter and decrease it by 9.73℃ in summer.During summer,high-reflection water-permeable bricks can reduce the PET by 1.08℃,and lawns can reduce the mean rachation temperature(Tmrt)by 1.650C;however,the lawns may produce a microclimate with a high air temperature.The results from this paper can be used as a reference for landscape planning and design in residential areas in high-altitude cold-climate regions.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.40640420072 and No.40771006)
文摘The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.
基金supported by the National Basic Research Pro-gram of China (Grant No. 2005CB422003)National Natural Science Foundation of China (Grant No. 40875005)+1 种基金the Program of Institute of Plateau Meteorology of China Meteorological Administration (BROP200803)the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP/CAMP-Tibet)
文摘The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based on two-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS3478 in the northern Tibetan Plateau during the experimental period of CEOP/CAMP-Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau). As a double-variable (solar altitude angle and soil moisture) function, surface albedo varies inconspicuously with any single factor. By using the method of approximately separating the double-variable function into two, one-factor functions (product and addition), the relationship of albedo with these two factors presents much better. The product and additional empirical formulae of albedo are then preliminarily fitted based on long-term experimental data. By comparison with observed values, it is found that the parameterization formulae fitted by using observational data are mostly reliable and their correlation coefficients are both over 0.6. The empirical formulae of albedo though, for the northern Tibetan Plateau, need to be tested by much more representative observational data with the help of numerical models and the retrieval of remote sensing data. It is practical until it is changed into effective parameterization formulae representing a grid scale in models.
基金the National Natural Science Foundation of China (No.59831030).
文摘The variation in altitude density function (ADF) of the surface topography of mild steel during electrochemical polishing (ECP) was investigated, and the mechanism of the variation of surface roughness with polishing time was analyzed. The results show that the variation trend of ADF with polishing time is flat-steep-flat; the variation of surface roughness results in the different distri- butions of surface current density, and there is a fine surface smoothness in the special period of ECP from 4 to 8 s.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372033).
文摘For composite electromagnetic(EM)scattering from rough surface and target above it in near-field condition,modified shooting and bouncing ray(SBR)method and integral equation method(IEM),which are analytic methods combined with two-scale model for rough surface,are proposed to solve the composite near-field scattering problems.And the modified method is verified in effectiveness and accuracy by comparing the simulation results with measured results.Finally,the composite near-fielding scattering characteristics of a slanted plane and rough water surface below are obtained by using the proposed methods,and the dynamic tendency of composite scattering characteristics versus near-fielding distance is analyzed,which may have practical contribution to engineering programs in need of radar targets near-field characteristics under extra-low-altitude conditions.
文摘During a research cruise over the Pacific Ocean in 1989, solar irradiance was measured with a broad-band pyranometer along the cruise track. Cloud cover was photographed with an all-sky time-lapse came ra. Cloud types were observed and recorded. The data show that both the types and the amounts of clouds affect radiation fluxes on the sea surface. For low-level and middle-level clouds, the correlations (r) between measured irradiance (in Percent of calculated maximum irradiance) and cloud amount (in fraction of sky) were significant: r=-0. 79 and - 0. 66, respectively. For high-level clouds, the correlation was not significant: r=-0. 21. The results indicate that cloud shortwave forcing is a major modifier of the earth's surface insolation and change of cloud amount may affect global climate.
基金the China State Key Basic Research Project (Grant No. 2001CB309401-05)the National Natural Science Foundation of China (Grant No. 60171009).
文摘To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the finite element method (FEM) is developed. The conformal perfectly matched layer (PML), as the truncation boundary of the FEM, is employed to reduce the reflection error of planar PML in conventional FEM. Numerical code of our FEM is examined by available solution of the forward backward iterative (FBM) method. Bistatic and back-scattering from composite model of a target above random rough sea surface generated by Monte Carlo realization, and functional dependence upon the sea surface wind speed, target altitude, incident and scattering angles, etc. are numerically simulated and discussed. This paper presents a numerical description of the observation principle and physical insight associated with the coupling interactions of a complex volumetric target and random rough sea surface.
文摘Landscape elements in residential areas can effectively improve the outdoor thermal environment,with different outcomes depending on the climate conditions.This study explores how the ground surface and shading properties affect the outdoor thermal environment in a high-altitude plateau climate where few studies have been conducted.The measurements were conducted during summer and winter in a residential area in Lhasa,Tibet.Without natural shading such as trees,there is a positive correlation between Sky-view factor(SVF)and Physiological equivalent temperature(PET)during winter and a negative correlation during summer.When SVF exceeds 0.65 in summer,it may cause human discomfort.Compared to artificial shading such as a tensioned membrane,deciduous trees are superior at improving human comfort,as they can increase PET by 10.56℃ in winter and decrease it by 9.73℃ in summer.During summer,high-reflection water-permeable bricks can reduce the PET by 1.08℃,and lawns can reduce the mean rachation temperature(Tmrt)by 1.650C;however,the lawns may produce a microclimate with a high air temperature.The results from this paper can be used as a reference for landscape planning and design in residential areas in high-altitude cold-climate regions.