Abstract High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pres...Abstract High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT) facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A*, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.展开更多
As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With...As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.展开更多
Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynami...Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.展开更多
文摘Abstract High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT) facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A*, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.
基金This study was co-supported by the National Science and Technology Major Project,China(No.J2019-V-0010-0104)Zhejiang Provincial Natural Science Foundation of China(No.LQ23E060007).
文摘As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.
基金supported in part by the Stable Support Research Project of AECC Sichuan Gas Turbine Establishment,China(No.GJCZ-0013-19)the Open Foundation of State Key Laboratory of Compressor Technology,China(Compressor Technology Laboratory of Anhui Province)(No.SKL-YSJ2020007).
文摘Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.