To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,...Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.展开更多
Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nan...Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.展开更多
Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dis...Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.展开更多
Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic st...Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic starch as the flocculant.Effects of different raw materials and their additions on the wave transparency of fiber products were researched.The results show that as the alumina fiber(72%)addition increases,the heating rate of the samples first decreases and then increases,and the corresponding wave transparency of the sample first increases and then decreases.When the alumina fibers addition is 40 mass%and the alumina powder addition is 30 mass%,the prepared microwave kiln lining material has a higher mullite content,which improves the wave transparency of the sample.The sample prepared from alumina fibers with an alumina content of 80%has a suitable glass-mullite phase ratio,performs lower overall dielectric constant and good wave transparency,and is a suitable lining material for microwave kilns.展开更多
This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the im...This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the impact of alumina particles, which are hard abrasives with irregular and angular shapes. Different characterization techniques were applied to gain a better understanding of alumina. For instance, particle size distribution was obtained using the Analysette 28 Image Sizer and the particle size was between 300 - 400 µm. SEM and EDS analysis were used to know the morphology and chemical composition of both the abrasive particles and AISI 304 stainless steel. Additionally, mechanical properties values such as the hardness and Young’s modulus of AISI 304 steel were attained using a Berkovich indenter (model TTX-NHT, CSM Instruments). On the other hand, two tests were carried out for each impact angle used, 30˚, 45˚, 60˚ and 90˚, with a particle velocity of 24 ± 2 m/s and an abrasive flow rate of 63 ± 0.5 g/min, employing a test rig based on ASTM G76-95 standard. SEM images using two detectors, Backscattered Electron Detector (BED) and Low Electron Detector (LED), were employed to identify the wear mechanisms on the AISI 304 eroded surfaces at 30˚ and 90˚. Finally, the erosion rates of AISI 304 compared to those results reached by AISI 1018 steel and AISI 420 stainless steel tested under identical conditions in previous works.展开更多
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The result...In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The results show that the alumina leaching efficiency of the calcium aluminate slag increases from 68.73% to 80.86% with Na2O content increasing from 0 to 4% when MgO content is 3%. The XRD results show that the quaternary compound C20A13M3S3 disappears when Na2O content increases to 4%. The addition of Na2O cannot remove the negative effect of MgO on leachability completely. XRD and EDS results indicate that Na2O can come into the lattice of 12CaO·7Al2O3 and promote the formation of 12CaO·7Al2O3展开更多
SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the second...SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.展开更多
High soda content in fine alumina trihydrate(ATH) limits its application and increases the soda consumption. The variation of soda content in the fine ATH by seeded precipitation was determined by detection of elect...High soda content in fine alumina trihydrate(ATH) limits its application and increases the soda consumption. The variation of soda content in the fine ATH by seeded precipitation was determined by detection of electric conductivity of solution, soda content in ATH, measurement of particle size distribution and microscopic analysis. The results show that high concentration of sodium aluminate solution, ground circulative seed, low temperature or fast initial precipitation rate increases the soda content in ATH. Soda mainly exists in lattice soda and less soda in desilication product (DSP) exists in the fine ATH precipitated from sodium aluminate solution with concentration of Al2O3 (ρAl2O3) more than 160 g/L and mass ratio of alumina to silica (μSiO2) of 400, and lattice soda decreases with increasing initial precipitation temperature, aging seed, and low precipitation rate and precipitation time. Results also imply that -+ 4)Na Al(OH ion-pair influences lattice soda content in ATH on the basis of electric conductivity variation.展开更多
Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner c...Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner castables to investigate their influences on the flow ability, linear change on heating, bulk density, apparent porosity, cold strength, hot modulus of rupture, therm, al shock resistance, slag resistance, oxidation resistance as well as wear resistance of Al2O3 - SiC - C iron runner castables. The results show that ( 1 ) compared with the specimens with fused dense corundum, the specimens with dense sintered alumina have equivalent installation property, slag resistance and oxidation resistance, equivalent or even higher cold modulus of rupture, cold crushing strength and hot modulus of rupture, exhibiting better thermal shock resistance and cold wear resistance ; (2) adopting bimodal alumina micropowder LISAL22RABL as well as water reducers ZX2 and ZD2 can well reduce the water requirement of silica fume free castables, solving the problem of deteriorated flow ability resulted from the lack of silica fume; since the lack of silica fume avoids the formation of low melting point liquid, the hot modulus of rupture and the thermal shock resistance of the silica fume free castables are both better than those of the silica fume containing castables ; (3) the density of the castable specimens with dense sintered alumina is 4% -6% lower than that of the castable specimens with Jhsed dense corundum so the refractories consumption of one iron runner reduces by 5% by using the tastable with dense sintered alumina, which obviously reduces the cost of refractories.展开更多
The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were prec...NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were precipitated by adding NH4HCO3 solution. After the mixed precipitations of Al(OH)3 and Fe(OH)3 were leached by NaOH solution, the NaAl(OH)4 solution was decomposed by carbonation. Finally, the pure Al(OH)3 was calcined to α-Al2O3. The optimal conditions of the whole technology were determined by experiments. The quality ofa-Al2O3 product is up to the technical indicator of YS/T 274-1998 standard.展开更多
To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic r...To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.展开更多
Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and ...Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and reaction sintering at 1 200, 1 300, 1 400 and 1 500 ℃fin 3 h, respectiely. Efcts of the three alu- mina micropowders on the phase composition, micro- structure and properties of CA were investigated. The re- sults show that : ( 1 ) for the three Al2O3 micropowders, the reaction to generate CA6 in specimens basically com- plete. at about 1 500 ℃ ; CA6 generated in all specimens is planar, bat the array modes are slightly different; (2) the specimel's prepared from, calcined α-Al2O3or ρ-Al2O3 shrink almost, while the specimens prepared from activated α-Al2O3 expand ; ( 3 ) the cold crushing strength of the specimen prepared from activated α-Al2O3 is the highest, reaching 42.5 MPa when only CA6 exists ( after firing at 1 500 ℃ ) ; ( 4 ) the specimen prepared from ρ-Al2O3 has the lowest generation temperature of CA6 and the highest apparent porosity, reaching 70. 1% when only CA exists (after firing at 1 500 ℃); (5) the specimen prepared from calcined α-Al2O3 has the biggest bulk density.展开更多
The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser struc...The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser structure. The results show that the extent of the reaction between alumina and carbon increases with increasing reaction temperature at 1643-1843 K; however, the extraction rate of aluminum increases firstly, and reaches the highest at 1743 K, and then decreases with rise in reaction temperature. The pre-reaction of alumina and carbon increases the extraction rate of aluminum. The impurities C, AlaC3 and A1203 in the aluminum product are reduced with reducing the contact surface of the aluminum with CO and with decreasing the condensation temperature, depending on the structure of the condenser.展开更多
Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the mol...Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.展开更多
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use...A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.展开更多
The effect of lime on the pre-desilication and digestion of gibbsitic bauxite in synthetic sodium aluminate liquor at different tem- peratures was investigated. The bauxite is comprised of gibbsite, aluminogoethite, h...The effect of lime on the pre-desilication and digestion of gibbsitic bauxite in synthetic sodium aluminate liquor at different tem- peratures was investigated. The bauxite is comprised of gibbsite, aluminogoethite, hematite, kaolin, quartz, and minor boehmite. Lime in- creases the desilication efficiency of the bauxite during the pre-desilication process by promoting the conversion of sodalite and cancrinite to hydrogamet. Desilication reactions during the digestion process promoted by lime result in the loss of A1203 entering the red mud, but the amount of aluminogoethite-to-hematite conversion promoted by lime leads to the increase of aluminogoethific A1203 entering the digested liquor. The alumina digestion rate at 245~C is higher than that at 145 C due to the more pronounced conversion of aluminogoethite to hema- tite. The soda consumption during the digestion process decreases due to lime addition, especially at higher temperatures.展开更多
Effect of lithium ion in sodium aluminate solution on precipitation rate,lithium content,morphology,and crystallization of alumina trihydrate(ATH) was investigated. Results showed that increasing lithium ion concentra...Effect of lithium ion in sodium aluminate solution on precipitation rate,lithium content,morphology,and crystallization of alumina trihydrate(ATH) was investigated. Results showed that increasing lithium ion concentration in solution improved the precipitation rate and lithium content in ATH,whereas reduced the mass fraction of lithium precipitation from solution. Lithium ion in solution generated the fine ATH, and thereafter significantly increased the total particle number due to the preferential nucleation.Elevating temperature or reducing lithium ion concentration decreased lithium content in ATH and reduced the fine particle amount.Moreover, lithium ion in the solution changed the morphology of ATH by improving the growth of the(110) and(200) planes of gibbsite.A large amount of fine bar-or flake-shaped ATH attached on the coarse particles also benefited the secondary nucleation and led to the poor strength of alumina.All results will further contribute to improving the quality of alumina.展开更多
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金funding from the Natural Science Foundation of China(22278150,22075086,22138005,and 22141001)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010980,2023A1515010046)the Fundamental Research Funds for the Central Universities(2022ZYGXZR101).
文摘Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.
基金financially supported by the National Natural Science Foundation of China(Nos.51777097,51577093)。
文摘Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.
基金funded by the COMET program within the K2 Center “Integrated Computational MaterialProcess and Product Engineering (IC-MPPE)”, Project No. 859480+7 种基金supported by the Austrian Federal Ministries for TransportInnovationand Technology (BMVIT)Digital and Economic Affairs (BMDW)represented by the Austrian Research Funding Association (FFG)the federal states of StyriaUpper Austriaand Tyrol
文摘Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.
文摘Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic starch as the flocculant.Effects of different raw materials and their additions on the wave transparency of fiber products were researched.The results show that as the alumina fiber(72%)addition increases,the heating rate of the samples first decreases and then increases,and the corresponding wave transparency of the sample first increases and then decreases.When the alumina fibers addition is 40 mass%and the alumina powder addition is 30 mass%,the prepared microwave kiln lining material has a higher mullite content,which improves the wave transparency of the sample.The sample prepared from alumina fibers with an alumina content of 80%has a suitable glass-mullite phase ratio,performs lower overall dielectric constant and good wave transparency,and is a suitable lining material for microwave kilns.
文摘This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the impact of alumina particles, which are hard abrasives with irregular and angular shapes. Different characterization techniques were applied to gain a better understanding of alumina. For instance, particle size distribution was obtained using the Analysette 28 Image Sizer and the particle size was between 300 - 400 µm. SEM and EDS analysis were used to know the morphology and chemical composition of both the abrasive particles and AISI 304 stainless steel. Additionally, mechanical properties values such as the hardness and Young’s modulus of AISI 304 steel were attained using a Berkovich indenter (model TTX-NHT, CSM Instruments). On the other hand, two tests were carried out for each impact angle used, 30˚, 45˚, 60˚ and 90˚, with a particle velocity of 24 ± 2 m/s and an abrasive flow rate of 63 ± 0.5 g/min, employing a test rig based on ASTM G76-95 standard. SEM images using two detectors, Backscattered Electron Detector (BED) and Low Electron Detector (LED), were employed to identify the wear mechanisms on the AISI 304 eroded surfaces at 30˚ and 90˚. Finally, the erosion rates of AISI 304 compared to those results reached by AISI 1018 steel and AISI 420 stainless steel tested under identical conditions in previous works.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
基金Project (51104053) supported by the National Natural Science Foundation of ChinaProject (XL200921) supported by the Foundation Research funds for Hebei University of Science and Technology, China
文摘In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The results show that the alumina leaching efficiency of the calcium aluminate slag increases from 68.73% to 80.86% with Na2O content increasing from 0 to 4% when MgO content is 3%. The XRD results show that the quaternary compound C20A13M3S3 disappears when Na2O content increases to 4%. The addition of Na2O cannot remove the negative effect of MgO on leachability completely. XRD and EDS results indicate that Na2O can come into the lattice of 12CaO·7Al2O3 and promote the formation of 12CaO·7Al2O3
基金Project(51104053)supported by the National Natural Science Foundation of ChinaProject(E2012208047)supported by the Natural Science Foundation of Hebei Province,China
文摘SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘High soda content in fine alumina trihydrate(ATH) limits its application and increases the soda consumption. The variation of soda content in the fine ATH by seeded precipitation was determined by detection of electric conductivity of solution, soda content in ATH, measurement of particle size distribution and microscopic analysis. The results show that high concentration of sodium aluminate solution, ground circulative seed, low temperature or fast initial precipitation rate increases the soda content in ATH. Soda mainly exists in lattice soda and less soda in desilication product (DSP) exists in the fine ATH precipitated from sodium aluminate solution with concentration of Al2O3 (ρAl2O3) more than 160 g/L and mass ratio of alumina to silica (μSiO2) of 400, and lattice soda decreases with increasing initial precipitation temperature, aging seed, and low precipitation rate and precipitation time. Results also imply that -+ 4)Na Al(OH ion-pair influences lattice soda content in ATH on the basis of electric conductivity variation.
文摘Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner castables to investigate their influences on the flow ability, linear change on heating, bulk density, apparent porosity, cold strength, hot modulus of rupture, therm, al shock resistance, slag resistance, oxidation resistance as well as wear resistance of Al2O3 - SiC - C iron runner castables. The results show that ( 1 ) compared with the specimens with fused dense corundum, the specimens with dense sintered alumina have equivalent installation property, slag resistance and oxidation resistance, equivalent or even higher cold modulus of rupture, cold crushing strength and hot modulus of rupture, exhibiting better thermal shock resistance and cold wear resistance ; (2) adopting bimodal alumina micropowder LISAL22RABL as well as water reducers ZX2 and ZD2 can well reduce the water requirement of silica fume free castables, solving the problem of deteriorated flow ability resulted from the lack of silica fume; since the lack of silica fume avoids the formation of low melting point liquid, the hot modulus of rupture and the thermal shock resistance of the silica fume free castables are both better than those of the silica fume containing castables ; (3) the density of the castable specimens with dense sintered alumina is 4% -6% lower than that of the castable specimens with Jhsed dense corundum so the refractories consumption of one iron runner reduces by 5% by using the tastable with dense sintered alumina, which obviously reduces the cost of refractories.
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
基金Project(2007CB613603)supported by the National Basic Research Program of ChinaProject(2013M530934)supported by the China Postdoctoral Science Foundation
文摘NH4HSO4 roasting technology was used for preparing Al2O3 from fly ash. First, Al and Fe were extracted from fly ash by NH4HSO4 roasting and deionized water leaching. Then, the Al and Fe in the leached liquid were precipitated by adding NH4HCO3 solution. After the mixed precipitations of Al(OH)3 and Fe(OH)3 were leached by NaOH solution, the NaAl(OH)4 solution was decomposed by carbonation. Finally, the pure Al(OH)3 was calcined to α-Al2O3. The optimal conditions of the whole technology were determined by experiments. The quality ofa-Al2O3 product is up to the technical indicator of YS/T 274-1998 standard.
基金Project (2012BAF03B01) supported by the National Science and Technology Support Program of ChinaProject (2011AA060701) supported by the Hi-tech Research and Development Program of China
文摘To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.
文摘Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and reaction sintering at 1 200, 1 300, 1 400 and 1 500 ℃fin 3 h, respectiely. Efcts of the three alu- mina micropowders on the phase composition, micro- structure and properties of CA were investigated. The re- sults show that : ( 1 ) for the three Al2O3 micropowders, the reaction to generate CA6 in specimens basically com- plete. at about 1 500 ℃ ; CA6 generated in all specimens is planar, bat the array modes are slightly different; (2) the specimel's prepared from, calcined α-Al2O3or ρ-Al2O3 shrink almost, while the specimens prepared from activated α-Al2O3 expand ; ( 3 ) the cold crushing strength of the specimen prepared from activated α-Al2O3 is the highest, reaching 42.5 MPa when only CA6 exists ( after firing at 1 500 ℃ ) ; ( 4 ) the specimen prepared from ρ-Al2O3 has the lowest generation temperature of CA6 and the highest apparent porosity, reaching 70. 1% when only CA exists (after firing at 1 500 ℃); (5) the specimen prepared from calcined α-Al2O3 has the biggest bulk density.
基金Project(51264023)supported by the National Natural Science Foundation of ChinaProject(KKSY201207016)supported by Yunnan Provincial Science and Technology Department,China
文摘The extraction conditions of aluminum by the disproportionation process of A1C1 in vacuum were investigated using alumina and graphite as raw materials, including reaction temperature, pre-reaction and condenser structure. The results show that the extent of the reaction between alumina and carbon increases with increasing reaction temperature at 1643-1843 K; however, the extraction rate of aluminum increases firstly, and reaches the highest at 1743 K, and then decreases with rise in reaction temperature. The pre-reaction of alumina and carbon increases the extraction rate of aluminum. The impurities C, AlaC3 and A1203 in the aluminum product are reduced with reducing the contact surface of the aluminum with CO and with decreasing the condensation temperature, depending on the structure of the condenser.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject (20095314110003) supported by the Special Research Funds of the Doctor Subject of Higher School,China
文摘Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.
基金Project(2010AA065201)supported by the High-tech Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited
文摘A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.
基金the National Natural Science Foundation of China(Nos.51104041 and 51174054)
文摘The effect of lime on the pre-desilication and digestion of gibbsitic bauxite in synthetic sodium aluminate liquor at different tem- peratures was investigated. The bauxite is comprised of gibbsite, aluminogoethite, hematite, kaolin, quartz, and minor boehmite. Lime in- creases the desilication efficiency of the bauxite during the pre-desilication process by promoting the conversion of sodalite and cancrinite to hydrogamet. Desilication reactions during the digestion process promoted by lime result in the loss of A1203 entering the red mud, but the amount of aluminogoethite-to-hematite conversion promoted by lime leads to the increase of aluminogoethific A1203 entering the digested liquor. The alumina digestion rate at 245~C is higher than that at 145 C due to the more pronounced conversion of aluminogoethite to hema- tite. The soda consumption during the digestion process decreases due to lime addition, especially at higher temperatures.
基金Project(2015BAB04B01)supported by the National Key Technology Research&Development Program of ChinaProject(CSUZC201811)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Effect of lithium ion in sodium aluminate solution on precipitation rate,lithium content,morphology,and crystallization of alumina trihydrate(ATH) was investigated. Results showed that increasing lithium ion concentration in solution improved the precipitation rate and lithium content in ATH,whereas reduced the mass fraction of lithium precipitation from solution. Lithium ion in solution generated the fine ATH, and thereafter significantly increased the total particle number due to the preferential nucleation.Elevating temperature or reducing lithium ion concentration decreased lithium content in ATH and reduced the fine particle amount.Moreover, lithium ion in the solution changed the morphology of ATH by improving the growth of the(110) and(200) planes of gibbsite.A large amount of fine bar-or flake-shaped ATH attached on the coarse particles also benefited the secondary nucleation and led to the poor strength of alumina.All results will further contribute to improving the quality of alumina.