We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both...We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both samples are characterized by transmission electron microscopy, and the density and the size distribution of vacancy defect clusters are determined. Their transmittances are measured before and after irradiating the samples by protons with energy E = 100 keV and dose φ = 6 × 10^11/mm^2. Our experimental results show that the density and the size of vacancy defect clusters increase with the increase of irradiation doses in the irradiated pure aluminium foils. As irradiation dose increases, vacancies incline to form larger defect clusters. In the irradiated filter, a large number of banded void defects are observed at the agglomerate boundary, which results in the degradation of the optical and mechanical performances of the filter after proton irradiation.展开更多
In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration...In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So VN acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level E(3+/+) with very low formation energy appears at 0.7 and 0,6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.展开更多
According to experts in the business,the com- petition pattern in the world aluminium can ma- terial market will experience changes before 2008.China may become one of the 6 largest tin material manufacturers in the w...According to experts in the business,the com- petition pattern in the world aluminium can ma- terial market will experience changes before 2008.China may become one of the 6 largest tin material manufacturers in the world.展开更多
The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a cor...The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.展开更多
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tec...The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.展开更多
The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc o...The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.展开更多
Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achie...Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.展开更多
Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visual...Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.展开更多
The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld meta...Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.展开更多
The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field ...The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.展开更多
The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were ...The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were measured,and the corresponding microstructures were characterized by transmission electron microscopy(TEM).The results show that compared with unstretched samples,the peak hardness is increased and the time to reach the peak hardness is reduced with the increase of pre-strain;the number density of S(Al2CuMg) phases is increased and the length is shortened in pre-stretched alloy.Additionally,the number density of GPB zones is decreased with the increase of pre-strain in peak-aged samples.When the pre-strain is up to 5%,S phases play the predominant contribution to the peak hardness.Fine and uniformly distributed S phases lead to a higher hardness than GPB zones together with S phases existing in conventionally aged 2524 alloy.展开更多
Low frequency electromagnetic casting (LFEC) process with the application of an induction coil outside the conventional direct chill (DC) casting mould was used to prepare the flat ingot of 2524 alloy and the effe...Low frequency electromagnetic casting (LFEC) process with the application of an induction coil outside the conventional direct chill (DC) casting mould was used to prepare the flat ingot of 2524 alloy and the effect of electromagnetic field on the microstructure and macrosegregation of this alloy was systematically studied. The results show that the fiat ingot prepared by the LFEC process has a finer and more uniform as-cast microstructure and the grain morphology is transformed from dendrite and rosette-like to equiaxed structure. The LFEC process also shows a significant effect on macrosegregation, and with the application of electromagnetic field during casting process, the segregation in the centre of the ingot is obviously reduced. The mechanism of these effects was also discussed.展开更多
NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance...NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
[Objective] This study aimed to investigate the immunological adjuvant function of aluminium phosphate and chicken IL-18 in NDV F gene vaccine. [Method] The vaccine (0.2 ml) containing aluminum phosphate adjuvant (...[Objective] This study aimed to investigate the immunological adjuvant function of aluminium phosphate and chicken IL-18 in NDV F gene vaccine. [Method] The vaccine (0.2 ml) containing aluminum phosphate adjuvant (90 μg), pcDNA/F (200μg), and pcDNA/chlL-18 (200 μg) was prepared. The 7 d old chick- ens to be tested were randomly divided into six groups (12 chickens in each group) and immunized through intramuscular injection with inactivated Newcastle disease vaccines, pcDNA/F+pcDNA/chlL-18+phosphate aluminum, pcDNA/F, pcDNA/F.+pcDNA/ chlL-18, pcDNA/F+aluminum phosphate, and physiological saline respectively; the secondary immunization was conducted with the same dose when the chickens were 21 d old. Their blood was sampled 0, 7, 14, 21, 28 d after first immunization. Anti- body titer was detected with ELISA and T cell transformation rate was measured with MIT. Experimental chicken will be challenged with 30 LD50 NDV virulence 28 d after first immunization. [Result] The survival rate of the chickens immunized with pcDNA/F+aluminium phosphate+pcDNA/chlL-18 achieved 8/12, higher than that of those immunized with pcDNA/F 4/12 and pcDNA/F+pcDNA/chlL-18 (6/12). The NDV antibody titer of the chickens immunized with pcDNA/F+ aluminum phosphate, pcD- NA/F+pcDNA/chlL-18 and pcDNA/F+pcDNA/chlL-18+aluminum phosphate is not differ- ent (P〉0.05), but significantly lower than that of the chickens immunized with tradi- tional vaccine (P〈0.05). The T cell transformation rate of the chickens immunized with pcDNA/F+pcDNA/chlL-18+aluminium phosphate was obviously higher than that of the chickens immunized with pcDNA/F (P〈0.05). The T cell transformation rates of chickens immunized with pcDNA/F and the traditional vaccine showed no signifi- cant difference (P〉0.05). [Conclusion] Combination of aluminium phosphate and pcD- NA/chlL-18 can significantly enhance the immune effect of NDV F gene vaccine.展开更多
Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and ...Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and the microstructure of the bent vs straight parts of the tube was established. Investigations were carried out on two alloys containing 0.08% and 0.22% (mass fraction) of manganese. The corrosion morphology of bent tubes after immersion in salt water acetic acid test (SWAAT) solution showed the highest attack at the bent region of the high-Mn alloy. SEM characterisation of the alloys showed that each alloy has one main type of coarse intermetallic particle. However, TEM observation showed that there is a distinct difference in particle morphology between the bent and straight regions of the high-Mn tubes, the bent region revealed an additional population of 10 50 nm Mn-rich intermetallic particles, which increased both the anodic and cathodic reactivity. For the low-Mn alloy, no such effects were observed. The results suggested that cold deformation of the high-Mn tube allowed room temperature precipitation of fine Mn-rich particles, which increased the cathodic reactivity of that region by providing more cathodic sites, and increased the susceptibility to pitting by removing noble Mn from solid solution. Such an effect was not observed for the low-Mn alloy.展开更多
AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigu...AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50671042)the Program for Innovative Research Team of Jangsu University and the Program for Exellent Talents of Jangsu University (Grant No. 07JDG032)
文摘We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both samples are characterized by transmission electron microscopy, and the density and the size distribution of vacancy defect clusters are determined. Their transmittances are measured before and after irradiating the samples by protons with energy E = 100 keV and dose φ = 6 × 10^11/mm^2. Our experimental results show that the density and the size of vacancy defect clusters increase with the increase of irradiation doses in the irradiated pure aluminium foils. As irradiation dose increases, vacancies incline to form larger defect clusters. In the irradiated filter, a large number of banded void defects are observed at the agglomerate boundary, which results in the degradation of the optical and mechanical performances of the filter after proton irradiation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474078). Acknowledgement Thanks for the Intelligent Information Process and Calculation Laboratory of Science School in Xi'an Jiaotong University providing us the computing condition.
文摘In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So VN acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level E(3+/+) with very low formation energy appears at 0.7 and 0,6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.
文摘According to experts in the business,the com- petition pattern in the world aluminium can ma- terial market will experience changes before 2008.China may become one of the 6 largest tin material manufacturers in the world.
文摘The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.
基金Projects(51104043,51374067)supported by the National Natural Science Foundation of ChinaProject(2012CB619506)supported by the National Basic Research Program of ChinaProject(N120409002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.
基金Project (GZ583) supported by the Sino-German Center for Science Promotion
文摘Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.
文摘Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.
基金Project (2009A080205003) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject (30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.
基金Project(51001022) supported by the National Natural Science Foundation of ChinaProject supported by Innovative Research Team in University of Liaoning Province,China
文摘The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were measured,and the corresponding microstructures were characterized by transmission electron microscopy(TEM).The results show that compared with unstretched samples,the peak hardness is increased and the time to reach the peak hardness is reduced with the increase of pre-strain;the number density of S(Al2CuMg) phases is increased and the length is shortened in pre-stretched alloy.Additionally,the number density of GPB zones is decreased with the increase of pre-strain in peak-aged samples.When the pre-strain is up to 5%,S phases play the predominant contribution to the peak hardness.Fine and uniformly distributed S phases lead to a higher hardness than GPB zones together with S phases existing in conventionally aged 2524 alloy.
基金Projects(51104043,51374067)supported by the National Natural Science Foundation of ChinaProject(2012CB619506)supported by the National Basic Research Program of ChinaProject(N120409002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Low frequency electromagnetic casting (LFEC) process with the application of an induction coil outside the conventional direct chill (DC) casting mould was used to prepare the flat ingot of 2524 alloy and the effect of electromagnetic field on the microstructure and macrosegregation of this alloy was systematically studied. The results show that the fiat ingot prepared by the LFEC process has a finer and more uniform as-cast microstructure and the grain morphology is transformed from dendrite and rosette-like to equiaxed structure. The LFEC process also shows a significant effect on macrosegregation, and with the application of electromagnetic field during casting process, the segregation in the centre of the ingot is obviously reduced. The mechanism of these effects was also discussed.
基金Project (2012FJ6123) supported by the Project of Science and Technology of Hunan Province,ChinaProject supported by Post-Doctoral Foundation of Central South University,China+1 种基金Project (CL12100) supported the Undergraduate Innovative Training of Central South University,ChinaProject (2282013bkso13) supported by Free Exploration Plan of Central South University,China
文摘NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
文摘[Objective] This study aimed to investigate the immunological adjuvant function of aluminium phosphate and chicken IL-18 in NDV F gene vaccine. [Method] The vaccine (0.2 ml) containing aluminum phosphate adjuvant (90 μg), pcDNA/F (200μg), and pcDNA/chlL-18 (200 μg) was prepared. The 7 d old chick- ens to be tested were randomly divided into six groups (12 chickens in each group) and immunized through intramuscular injection with inactivated Newcastle disease vaccines, pcDNA/F+pcDNA/chlL-18+phosphate aluminum, pcDNA/F, pcDNA/F.+pcDNA/ chlL-18, pcDNA/F+aluminum phosphate, and physiological saline respectively; the secondary immunization was conducted with the same dose when the chickens were 21 d old. Their blood was sampled 0, 7, 14, 21, 28 d after first immunization. Anti- body titer was detected with ELISA and T cell transformation rate was measured with MIT. Experimental chicken will be challenged with 30 LD50 NDV virulence 28 d after first immunization. [Result] The survival rate of the chickens immunized with pcDNA/F+aluminium phosphate+pcDNA/chlL-18 achieved 8/12, higher than that of those immunized with pcDNA/F 4/12 and pcDNA/F+pcDNA/chlL-18 (6/12). The NDV antibody titer of the chickens immunized with pcDNA/F+ aluminum phosphate, pcD- NA/F+pcDNA/chlL-18 and pcDNA/F+pcDNA/chlL-18+aluminum phosphate is not differ- ent (P〉0.05), but significantly lower than that of the chickens immunized with tradi- tional vaccine (P〈0.05). The T cell transformation rate of the chickens immunized with pcDNA/F+pcDNA/chlL-18+aluminium phosphate was obviously higher than that of the chickens immunized with pcDNA/F (P〈0.05). The T cell transformation rates of chickens immunized with pcDNA/F and the traditional vaccine showed no signifi- cant difference (P〉0.05). [Conclusion] Combination of aluminium phosphate and pcD- NA/chlL-18 can significantly enhance the immune effect of NDV F gene vaccine.
文摘Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and the microstructure of the bent vs straight parts of the tube was established. Investigations were carried out on two alloys containing 0.08% and 0.22% (mass fraction) of manganese. The corrosion morphology of bent tubes after immersion in salt water acetic acid test (SWAAT) solution showed the highest attack at the bent region of the high-Mn alloy. SEM characterisation of the alloys showed that each alloy has one main type of coarse intermetallic particle. However, TEM observation showed that there is a distinct difference in particle morphology between the bent and straight regions of the high-Mn tubes, the bent region revealed an additional population of 10 50 nm Mn-rich intermetallic particles, which increased both the anodic and cathodic reactivity. For the low-Mn alloy, no such effects were observed. The results suggested that cold deformation of the high-Mn tube allowed room temperature precipitation of fine Mn-rich particles, which increased the cathodic reactivity of that region by providing more cathodic sites, and increased the susceptibility to pitting by removing noble Mn from solid solution. Such an effect was not observed for the low-Mn alloy.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.