The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a...The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.展开更多
The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits...The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.展开更多
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M...Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM.展开更多
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte...An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.展开更多
Laser surface alloying of γ TiAl alloy with nitrogen was studied under the constant protective nitrogen current (20l /min). The experimental results shown that the surface multi layers formed with experimental para...Laser surface alloying of γ TiAl alloy with nitrogen was studied under the constant protective nitrogen current (20l /min). The experimental results shown that the surface multi layers formed with experimental parameters could be up to 600μm depth; it consists of TiN,Ti 2AlN,α 2 and γ phases, without AlN, and the irregular coarse continuous “flow” line,dendrite,needle and granular nitrides disperse on the fine dendrite casting α 2 and γ phases substrate. The microstructure and compositions in the nitiding layer were determined and analyzed by SEM and EPMA and the mechanism for the formation of microstructure in the nitriding layer was also discussed.展开更多
The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatmen...The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatment(CT)on both microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2) alloys were studied.Microstructure and crack morphology were then examined by scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).The result showed that,after being subjected to the combination treatment of T6+CT+LSP,the optimal mechanical properties and thermal fatigue performance were obtained for the ZCuAl_(10)Fe_(3)Mn_(2) alloy with the tensile strength,hardness,and elongation of 720 MPa,300.16 HB,and 16%,respectively,and the thermal fatigue life could reach 7,100 cycles when the crack length was 0.1 mm.Moreover,the ZCuAl_(10)Fe_(3)Mn_(2) after combination treatment shows high resistance to oxidation,good adhesion between the matrix and grain boundaries,and dramatically reduced growth rate of crack.During thermal fatigue testing,under the combined action of thermal and alternating stresses,the microstructure around the sample notch oxidized and became loose and porous,which then converted to micro-cracks.Fatigue crack expanded along the grain boundary in the early stage.In the later stage,under the cyclic stress accumulation,the oxidized microstructure separated from the matrix,and the fatigue crack expanded in both intergranular and transgranular ways.The main crack was thick,and the path was meandering.展开更多
AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigu...AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.展开更多
The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging...The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.展开更多
Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aero...Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aerospace industry.The microstructure and mechanical properties of the weldments were also investigated.Relationships between the parameters and weld bead geometry were found.High quality weld joints without solidification crack that met AWS D17.1 requirements were obtained at(I)high pulse energy(25 J)and high average peak power(4.2 kW)and(II)low pulse energy(17.6 J)and low average peak power(2.8 kW).The weld joint formed at lower heat energy input exhibited finer dendritic grain structure.Mg vapourisation and hard phase compound(Al0.5Fe3Si0.5)formation decreased in the weld joint formed at lower heat energy input.Consequently,the tensile strength of the weldment formed at lower heat energy input(168 MPa)is by a factor of 1.15 higher but showed^29%decrease in hardness(111 HV0.1)at the joint when being compared with the weldment formed at higher heat energy input.Appropriate parameters selection is critical to obtaining 0.6 mm-thick AA5052-H32 pulse laser weld joints that meet AWS D17.1 requirements for aircraft structures.展开更多
The aim of the present study was to investigate the influence of Mg addition and T6 heat treatment on microstructure,mechanical and tribological properties of the Al-Si-Cu-Mg alloys.In this context,a series of Al-12Si...The aim of the present study was to investigate the influence of Mg addition and T6 heat treatment on microstructure,mechanical and tribological properties of the Al-Si-Cu-Mg alloys.In this context,a series of Al-12Si-3Cu-(0.5-2.5)Mg(wt.%)alloys were produced by permanent mould casting,and then subjected to T6 treatment.Their microstructure and mechanical properties were investigated using OM,XRD,SEM,EDS along with hardness,tension,compression and Charpy impact tests.Dry sliding friction and wear properties of the alloys were studied using a ball-on-disk type tester.It was observed that the microstructure of as-cast Al-12Si-3 Cu-Mg alloys consisted of a(Al),Si,O-CuAb,0-Mg_(2)Si,0-AbMg_(8)Cu(2)Si_(6) and π-AhMg_(3)FeSi_(6) phases.T6 heat treatment gave rise to nearly spherodization of eutectic Si particles,formation of finer 0-CuAH and 0-Mg_(2)Si precipitates and elimination of Chinese script morphology of 0-Mg_(2)Si phase.The addition of Mg up to 2.5 wt.%decreased the hardness,tensile and compressive strengths,tensile elongation and impact toughness of the as-cast and T6-treated alloys and increased their friction coefficient and volume loss.T6 treatment,on the other hand,led to a significant increase in mechanical properties and wear resistance of as-cast alloys.展开更多
In this paper, a plasma sprayed coating (Ni Cr B Si) on an Al Si alloy surface was melted by a CO 2 laser and a Nd:YAG laser respectively. The difference on the outline of the melted zone, chemical composition an...In this paper, a plasma sprayed coating (Ni Cr B Si) on an Al Si alloy surface was melted by a CO 2 laser and a Nd:YAG laser respectively. The difference on the outline of the melted zone, chemical composition and hardness distribution of the laser melted zones were investigated. Experimental results showed that samples treated by the Nd:YAG laser have a better cladding tendency, more uniform chemical composition and microhardness distribution. Samples treated by the CO 2 laser have larger compositional segregation and poorer microhardness distribution.展开更多
In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical prope...In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.展开更多
The solid solution and aging treatment for conventional manufacturing processes might not be suitable for laser additive manufactured titanium alloys due to the different lamellar microstructures.In this study,the inf...The solid solution and aging treatment for conventional manufacturing processes might not be suitable for laser additive manufactured titanium alloys due to the different lamellar microstructures.In this study,the influence of aging temperatures(600,700 and 800°C)on microstructure and mechanical properties of titanium alloy Ti-6Al-2V-1.5Mo-0.5Zr-0.3Si was investigated.The results indicate that after solid solution treatment at 970°C followed by water quenching,the alloy mainly consists of coarsening lamellar a phase in martensite α' matrix.Aging at 600°C will not change the size of primary lamellar α phase but lead to huge amount of secondary a phases(α_(s))generating with very fine microstructure.By increasing the aging temperature,the number of α_(s) decreases but with coarsened microstructures.When aged at 800°C,the width of the asphase reaches 350 nm,almost 7 times wider than that aged at 600°C.The changing size of α_(s) obviously influences the property of the alloy.The fine α_(s) leads to high strength and microhardness but low plasticity,and specimen aged at 700°C with suitable assize has the best comprehensive properties.展开更多
7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+...7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength.展开更多
A mixing microstructure containing Ni based amorphous structures was observed by TEM in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous stru...A mixing microstructure containing Ni based amorphous structures was observed by TEM in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni 3Al crystals coexists in the cladding. The microhardness of the mixing amorphous structure is HV 600~800, which is lower than that of crystal phases in the coating. Differential thermal analysis (DTA) shows that Ni based amorphous structure exhibits a higher initial crystallizing temperature (about 588 ℃), which is slightly higher than that of the eutectic temperature of Al Si alloy. The wear test results indicate that there are some amorphous structures in the laser clad coating, which reduces the peeling of the granular phases from matrix, and improves the wear resistance.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
Anodizing of aluminium is widely applied when a controllable morphology and properties of the surface are required. Anodic oxide films may be developed by appropriate selection of electrolyte and film-forming conditio...Anodizing of aluminium is widely applied when a controllable morphology and properties of the surface are required. Anodic oxide films may be developed by appropriate selection of electrolyte and film-forming conditions for various applications in the fields of architecture, aerospace, electronics, packaging and printing. In the present study, the printability of aluminium with respect to anodizing conditions is discussed. In particular, AA1050 alloy specimens were anodized in either sulfuric acid or phosphoric acid at temperatures ranging from 10?C to 40?C, thereby affecting the porosity and anodic layer thickness. Both the porosity and oxide thickness increase with the temperature, whereas anodization in phosphoric acid produces thinner and more porous layer than that in sulfuric acid. After the anodization step, two different printing techniques were used (i.e. digital printing and screen printing). Printed specimens were characterized by means of colour parameters, microscopy, adhesion and light fastness test. Colour parameters and ink adhesion measurements indicate that both digital and screen printing techniques give a better print quality when the anodization step is conducted in the range of 20?C - 30?C.展开更多
Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influen...Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.展开更多
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie...Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.展开更多
基金the National Natural Science Foundation of China(No.52205240).
文摘The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.
基金Project(BX201600010) supported by the National Postdoctoral Program for Innovative Talents of ChinaProject(2015QNRC001) supported by the Young Elite Scientist Sponsorship Program of China
文摘The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.
基金financially supported by the the National Natural Science Foundation of China(Nos.51801079 and 52001140)the Natural Science Foundation for Young Scientists of Jiangsu,China(Nos.BK20180985 and BK20180987)the Open Foundation of Zhenjiang Key Laboratory for High Technology Research on Marine Functional Films(No.ZHZ2019001)。
文摘Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM.
基金Project(CSTC2015ZDCY-ZTZX50002) supported by the Innovation Program of Common and Key Technologies in Major Industries of Chongqing,China
文摘An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.
文摘Laser surface alloying of γ TiAl alloy with nitrogen was studied under the constant protective nitrogen current (20l /min). The experimental results shown that the surface multi layers formed with experimental parameters could be up to 600μm depth; it consists of TiN,Ti 2AlN,α 2 and γ phases, without AlN, and the irregular coarse continuous “flow” line,dendrite,needle and granular nitrides disperse on the fine dendrite casting α 2 and γ phases substrate. The microstructure and compositions in the nitiding layer were determined and analyzed by SEM and EPMA and the mechanism for the formation of microstructure in the nitriding layer was also discussed.
基金National Natural Science Foundation of China(51801076)Natural Science Research of Jiangsu Higher Education Institutions of China(18KJB430009)+1 种基金Jiangsu Province Postdoctoral Science Foundation(1601055C)Senior Talents Research Startup of Jiangsu University(14JDG126)。
文摘The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatment(CT)on both microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2) alloys were studied.Microstructure and crack morphology were then examined by scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).The result showed that,after being subjected to the combination treatment of T6+CT+LSP,the optimal mechanical properties and thermal fatigue performance were obtained for the ZCuAl_(10)Fe_(3)Mn_(2) alloy with the tensile strength,hardness,and elongation of 720 MPa,300.16 HB,and 16%,respectively,and the thermal fatigue life could reach 7,100 cycles when the crack length was 0.1 mm.Moreover,the ZCuAl_(10)Fe_(3)Mn_(2) after combination treatment shows high resistance to oxidation,good adhesion between the matrix and grain boundaries,and dramatically reduced growth rate of crack.During thermal fatigue testing,under the combined action of thermal and alternating stresses,the microstructure around the sample notch oxidized and became loose and porous,which then converted to micro-cracks.Fatigue crack expanded along the grain boundary in the early stage.In the later stage,under the cyclic stress accumulation,the oxidized microstructure separated from the matrix,and the fatigue crack expanded in both intergranular and transgranular ways.The main crack was thick,and the path was meandering.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.
基金supported by the Program for New Century Excellent Talents in Universities of China (No.NCET-06-0879)the National Natural Science Foundation of China (No.50331010)+2 种基金the Northwestern Polytechnical University Foundation of Fundamental Research (No.NPU-FFR-JC200808)the National Basic Research Program of China (No.2007CB613800)the Program of Introducing Talents of Discipline to Universities,China (No.08040)
文摘The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.
基金the funding (UniversityIndustry Engagement Grant)support provided by the Universiti Sains Malaysia under the Teaching Fellowship Scheme
文摘Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aerospace industry.The microstructure and mechanical properties of the weldments were also investigated.Relationships between the parameters and weld bead geometry were found.High quality weld joints without solidification crack that met AWS D17.1 requirements were obtained at(I)high pulse energy(25 J)and high average peak power(4.2 kW)and(II)low pulse energy(17.6 J)and low average peak power(2.8 kW).The weld joint formed at lower heat energy input exhibited finer dendritic grain structure.Mg vapourisation and hard phase compound(Al0.5Fe3Si0.5)formation decreased in the weld joint formed at lower heat energy input.Consequently,the tensile strength of the weldment formed at lower heat energy input(168 MPa)is by a factor of 1.15 higher but showed^29%decrease in hardness(111 HV0.1)at the joint when being compared with the weldment formed at higher heat energy input.Appropriate parameters selection is critical to obtaining 0.6 mm-thick AA5052-H32 pulse laser weld joints that meet AWS D17.1 requirements for aircraft structures.
文摘The aim of the present study was to investigate the influence of Mg addition and T6 heat treatment on microstructure,mechanical and tribological properties of the Al-Si-Cu-Mg alloys.In this context,a series of Al-12Si-3Cu-(0.5-2.5)Mg(wt.%)alloys were produced by permanent mould casting,and then subjected to T6 treatment.Their microstructure and mechanical properties were investigated using OM,XRD,SEM,EDS along with hardness,tension,compression and Charpy impact tests.Dry sliding friction and wear properties of the alloys were studied using a ball-on-disk type tester.It was observed that the microstructure of as-cast Al-12Si-3 Cu-Mg alloys consisted of a(Al),Si,O-CuAb,0-Mg_(2)Si,0-AbMg_(8)Cu(2)Si_(6) and π-AhMg_(3)FeSi_(6) phases.T6 heat treatment gave rise to nearly spherodization of eutectic Si particles,formation of finer 0-CuAH and 0-Mg_(2)Si precipitates and elimination of Chinese script morphology of 0-Mg_(2)Si phase.The addition of Mg up to 2.5 wt.%decreased the hardness,tensile and compressive strengths,tensile elongation and impact toughness of the as-cast and T6-treated alloys and increased their friction coefficient and volume loss.T6 treatment,on the other hand,led to a significant increase in mechanical properties and wear resistance of as-cast alloys.
文摘In this paper, a plasma sprayed coating (Ni Cr B Si) on an Al Si alloy surface was melted by a CO 2 laser and a Nd:YAG laser respectively. The difference on the outline of the melted zone, chemical composition and hardness distribution of the laser melted zones were investigated. Experimental results showed that samples treated by the Nd:YAG laser have a better cladding tendency, more uniform chemical composition and microhardness distribution. Samples treated by the CO 2 laser have larger compositional segregation and poorer microhardness distribution.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51975441 and 52271135)the Innovation Funding Project of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-1871)+6 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.92266102)the Natural Science Foundation of Hubei Province(Grant No.2022CFB492)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010174)the Application Foundation Frontier Project of Wuhan(No.2020010601012171)the“Chu Tian Scholar”project of Hubei Province(No.CTXZ2017-05)the Overseas Expertise Introduction Project for Discipline Innovation(No.B17034)Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83).
文摘In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.
基金financially supported by the Beijing Municipal Science and Technology Project(No.Z171100000817002)the Young Elite Scientist Sponsorship Program by CAST and the National Key Research and Development Program of China(No.2016YFB1100401)。
文摘The solid solution and aging treatment for conventional manufacturing processes might not be suitable for laser additive manufactured titanium alloys due to the different lamellar microstructures.In this study,the influence of aging temperatures(600,700 and 800°C)on microstructure and mechanical properties of titanium alloy Ti-6Al-2V-1.5Mo-0.5Zr-0.3Si was investigated.The results indicate that after solid solution treatment at 970°C followed by water quenching,the alloy mainly consists of coarsening lamellar a phase in martensite α' matrix.Aging at 600°C will not change the size of primary lamellar α phase but lead to huge amount of secondary a phases(α_(s))generating with very fine microstructure.By increasing the aging temperature,the number of α_(s) decreases but with coarsened microstructures.When aged at 800°C,the width of the asphase reaches 350 nm,almost 7 times wider than that aged at 600°C.The changing size of α_(s) obviously influences the property of the alloy.The fine α_(s) leads to high strength and microhardness but low plasticity,and specimen aged at 700°C with suitable assize has the best comprehensive properties.
文摘7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength.
基金The authors thank Professor Yongxiang Hu for the ns-LSP experiment on Mg-3Gd alloy and his useful discussion.The research was supported by the National Key R&D Program of China(2017YFA0303700)the National Natural Science Foundation of China(NSFC)(11574208).
文摘A mixing microstructure containing Ni based amorphous structures was observed by TEM in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni 3Al crystals coexists in the cladding. The microhardness of the mixing amorphous structure is HV 600~800, which is lower than that of crystal phases in the coating. Differential thermal analysis (DTA) shows that Ni based amorphous structure exhibits a higher initial crystallizing temperature (about 588 ℃), which is slightly higher than that of the eutectic temperature of Al Si alloy. The wear test results indicate that there are some amorphous structures in the laser clad coating, which reduces the peeling of the granular phases from matrix, and improves the wear resistance.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
文摘Anodizing of aluminium is widely applied when a controllable morphology and properties of the surface are required. Anodic oxide films may be developed by appropriate selection of electrolyte and film-forming conditions for various applications in the fields of architecture, aerospace, electronics, packaging and printing. In the present study, the printability of aluminium with respect to anodizing conditions is discussed. In particular, AA1050 alloy specimens were anodized in either sulfuric acid or phosphoric acid at temperatures ranging from 10?C to 40?C, thereby affecting the porosity and anodic layer thickness. Both the porosity and oxide thickness increase with the temperature, whereas anodization in phosphoric acid produces thinner and more porous layer than that in sulfuric acid. After the anodization step, two different printing techniques were used (i.e. digital printing and screen printing). Printed specimens were characterized by means of colour parameters, microscopy, adhesion and light fastness test. Colour parameters and ink adhesion measurements indicate that both digital and screen printing techniques give a better print quality when the anodization step is conducted in the range of 20?C - 30?C.
文摘Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.
基金support provided by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Hong Kong General Research Fund(GRF)Scheme(Ref:CityU 11216219)+2 种基金the Research Grants Council of Hong Kong(Project No:AoE/M-402/20)Shenzhen Science and Technology Program:JCYJ20220818101204010the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.