A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain t...A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain the parameters of empirical constitutive equation and dynamic recrystallization models for aluminium alloy 7050, the isothermal compression tests of 7050 samples were performed on Gleeble-1500 thermo-simulation machine in the temperature range of 250-450 ℃ and strain rate of 0.01-10 s-1, and the metallograph analysis of the samples were carried out on a Leica DMIRM image analyzer. The simulation results show that the dynamic recrystallization in the central area of the billet occurs more easily than that on the edge. Repetitious upsetting and stretching processes make the billet deform adequately. Among several forging processes e.g. upsetting, stretching, rounding and flatting, the stretching process is the most effective way to increase the effective strain and refine the microstructure of the billet. As the forging steps increase, the effective strain rises significantly and the average grain size reduces sharply. Recrystallized volume fractions in most parts of the final forging piece reach 100% and the average grain size reduces to 10 μm from initial value of 90 μm.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystall...The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.展开更多
基金Project(2005CB724105) supported by the National Basic Research Program of ChinaProject (IRT0549) supported by the Program for Changjiang Scholars and Innovative Research Team in University
文摘A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain the parameters of empirical constitutive equation and dynamic recrystallization models for aluminium alloy 7050, the isothermal compression tests of 7050 samples were performed on Gleeble-1500 thermo-simulation machine in the temperature range of 250-450 ℃ and strain rate of 0.01-10 s-1, and the metallograph analysis of the samples were carried out on a Leica DMIRM image analyzer. The simulation results show that the dynamic recrystallization in the central area of the billet occurs more easily than that on the edge. Repetitious upsetting and stretching processes make the billet deform adequately. Among several forging processes e.g. upsetting, stretching, rounding and flatting, the stretching process is the most effective way to increase the effective strain and refine the microstructure of the billet. As the forging steps increase, the effective strain rises significantly and the average grain size reduces sharply. Recrystallized volume fractions in most parts of the final forging piece reach 100% and the average grain size reduces to 10 μm from initial value of 90 μm.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Project(2005CB724105) supported by the Major State Basic Research Program of ChinaProject(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.