The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequen...The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequency mod- elling techniques in general. With the common purpose to predict mid-frequency vibro-acoustic responses of stiffened panel structures to an acceptable accuracy at a reasonable computational cost, relevant techniques are mainly based on one of the following three types of mid-frequency vibro- acoustic modelling principles: (1) enhanced deterministic methods, (2) enhanced statistical methods, and (3) hybrid deterministic/statistical methods. It is shown that, although recent developments have led to a significant step forward in industrial applicability, mature and adequate prediction tech- niques, however, are still very much required for solving sound transmission through, and radiation from, extruded aluminium panels used on high-speed trains. Due to their great potentials for predicting mid-frequency vibro-acoustics of stiffened panel structures, two of recently developed mid-frequency modelling approaches, i.e. the so-called hybrid finite element-statistical energy analysis (FE-SEA) and hybrid wave-based method- statistical energy analysis (WBM-SEA), are then recapitulated.展开更多
基金sponsored by the NationalNatural foundation of China(Grant Nos.U1434201 and 51175300)
文摘The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequency mod- elling techniques in general. With the common purpose to predict mid-frequency vibro-acoustic responses of stiffened panel structures to an acceptable accuracy at a reasonable computational cost, relevant techniques are mainly based on one of the following three types of mid-frequency vibro- acoustic modelling principles: (1) enhanced deterministic methods, (2) enhanced statistical methods, and (3) hybrid deterministic/statistical methods. It is shown that, although recent developments have led to a significant step forward in industrial applicability, mature and adequate prediction tech- niques, however, are still very much required for solving sound transmission through, and radiation from, extruded aluminium panels used on high-speed trains. Due to their great potentials for predicting mid-frequency vibro-acoustics of stiffened panel structures, two of recently developed mid-frequency modelling approaches, i.e. the so-called hybrid finite element-statistical energy analysis (FE-SEA) and hybrid wave-based method- statistical energy analysis (WBM-SEA), are then recapitulated.