Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a cor...The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tec...The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.展开更多
The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc o...The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.展开更多
Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achie...Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.展开更多
The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visual...Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.展开更多
The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were ...The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were measured,and the corresponding microstructures were characterized by transmission electron microscopy(TEM).The results show that compared with unstretched samples,the peak hardness is increased and the time to reach the peak hardness is reduced with the increase of pre-strain;the number density of S(Al2CuMg) phases is increased and the length is shortened in pre-stretched alloy.Additionally,the number density of GPB zones is decreased with the increase of pre-strain in peak-aged samples.When the pre-strain is up to 5%,S phases play the predominant contribution to the peak hardness.Fine and uniformly distributed S phases lead to a higher hardness than GPB zones together with S phases existing in conventionally aged 2524 alloy.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
文摘The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.
基金Projects(51104043,51374067)supported by the National Natural Science Foundation of ChinaProject(2012CB619506)supported by the National Basic Research Program of ChinaProject(N120409002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.
基金Project (GZ583) supported by the Sino-German Center for Science Promotion
文摘Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.
基金Project(51001022) supported by the National Natural Science Foundation of ChinaProject supported by Innovative Research Team in University of Liaoning Province,China
文摘The effects of pre-stretching following solution treatment on the hardness and microstructures of aged 2524 aluminium alloy at 170 ℃ were studied.Ageing hardness values under different pre-stretching conditions were measured,and the corresponding microstructures were characterized by transmission electron microscopy(TEM).The results show that compared with unstretched samples,the peak hardness is increased and the time to reach the peak hardness is reduced with the increase of pre-strain;the number density of S(Al2CuMg) phases is increased and the length is shortened in pre-stretched alloy.Additionally,the number density of GPB zones is decreased with the increase of pre-strain in peak-aged samples.When the pre-strain is up to 5%,S phases play the predominant contribution to the peak hardness.Fine and uniformly distributed S phases lead to a higher hardness than GPB zones together with S phases existing in conventionally aged 2524 alloy.