H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,...H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance ...For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance and dimensional stability. By virtue of water-soluble phenolic resin (PF), Chinese fir wood and Ca-MMT were mixed by pressure and vacuum impregnation. The optimum impregnation technology of Chinese fir wood/Ca-MMT composite board was obtained by using an orthogonal design and a single factor design of pressure and vacuum impregnation, using weight percent gain (WPG) as the basic index. The results are as follows: 1) On the basis of the orthogonal design and an actual experiment, the optimum preparation technology of Chinese fir wood/Ca-MMT composite board is 20% PF resin dispersion concentration (wt%), 1.0 CEC amount of organic intercalation agent, 0.098 MPa vacuum degree, 5% concentration of Ca-MMT and 1.0 MPa pressure. 2) The WPG of the composite board samples of 450 mm length was much larger than that of the samples of 600, 750 and 900 mm length. Warm water extraction contributed little to WPG展开更多
In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-lay...In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.展开更多
In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environme...In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environmental-friendly modified water glass binder,CP-88 starch adhesive,polyvinyl alcohol adhesive and polyvinyl acetate adhesive,then the edgewise crush resistance and flat crush resistance contrast experiment on produced corrugated board samples was tested.The experiment results demonstrated that the produced corrugated board with environmental-friendly modified water glass binder had high edgewise crush resistance,general flat crush resistance and more economic,so the environmental-friendly modified water glass binder can be used for the production of high strength four layer composite corrugated board.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the...Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.展开更多
文摘H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
基金the National Natural Science Foundation of China (Grant No.30271055)
文摘For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance and dimensional stability. By virtue of water-soluble phenolic resin (PF), Chinese fir wood and Ca-MMT were mixed by pressure and vacuum impregnation. The optimum impregnation technology of Chinese fir wood/Ca-MMT composite board was obtained by using an orthogonal design and a single factor design of pressure and vacuum impregnation, using weight percent gain (WPG) as the basic index. The results are as follows: 1) On the basis of the orthogonal design and an actual experiment, the optimum preparation technology of Chinese fir wood/Ca-MMT composite board is 20% PF resin dispersion concentration (wt%), 1.0 CEC amount of organic intercalation agent, 0.098 MPa vacuum degree, 5% concentration of Ca-MMT and 1.0 MPa pressure. 2) The WPG of the composite board samples of 450 mm length was much larger than that of the samples of 600, 750 and 900 mm length. Warm water extraction contributed little to WPG
基金the support from Ministry of Science and Technology,Taiwan,R.O.C.,through grant MOST-105-2221-E-007-031-MY3.
文摘In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.
文摘In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environmental-friendly modified water glass binder,CP-88 starch adhesive,polyvinyl alcohol adhesive and polyvinyl acetate adhesive,then the edgewise crush resistance and flat crush resistance contrast experiment on produced corrugated board samples was tested.The experiment results demonstrated that the produced corrugated board with environmental-friendly modified water glass binder had high edgewise crush resistance,general flat crush resistance and more economic,so the environmental-friendly modified water glass binder can be used for the production of high strength four layer composite corrugated board.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
文摘Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.