Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and A...Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.展开更多
In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a ...In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a geosynthetic strip(GS)and parts of a scrap truck tire as transverse members.The experimental pullout results for the CGS reinforcement were compared with the suggested theoretical equations and ordinary reinforcements,including the GS,the steel strip(SS),and the steel strip with rib(SSR).The pullout test results show that adding three transverse members to the GS reinforcement(CGS3)with S/H?6.6(where S and H are the space and height of the transverse members,respectively)increases pullout resistance by more than 120%,170%,and 50%compared to the GS,the SS,and the SSR,respectively.This result shows that the CGS3(CGS with three transverse members)reinforcement needs at least 55.5%,63%,and 33.3%smaller length compared to the GS,the SS,and the SSR,respectively.In general,implementation of mechanically stabilized earth wall(MSEW)with the proposed strip may help geotechnical engineers prevent costly designs and solve the problem of MSEW implementation in cases where there are limitations of space.展开更多
In this paper an experimental study on damage tolerance behaviour of composite panels with softening strips is carried out. A prediction method of residual strength of panels with softening strips is proposed. The com...In this paper an experimental study on damage tolerance behaviour of composite panels with softening strips is carried out. A prediction method of residual strength of panels with softening strips is proposed. The comparison between estimated and experimental results shows that the prediction method can be applied to design. In this paper the failure mechanisms are described.展开更多
A numerical method of integration of Green's functions of strip element method (SEM) is proposed The response of ultrasonic source generated by a transducer on the surface of a multi ply composite plate contain...A numerical method of integration of Green's functions of strip element method (SEM) is proposed The response of ultrasonic source generated by a transducer on the surface of a multi ply composite plate containing a delamination is analyzed by the use of SEM The numerical results show that the scanning features of the ultrasonic waves may be used to identify the delamination inside the composite plate.展开更多
The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilay...The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilayer composite coatings and thick monolayer coating of aluminium bronze, stainless steel and nickel-iron alloy were determined. The reason of decrement in internal stresses of multilayer composite coatings was discussed.展开更多
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water wit...The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples.展开更多
To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in ...To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in 2010.Based on the successful application of that LWCD,an adaptation incorporating an innovative composite deck structure,i.e.,the hot-rolled section steel–UHPC composite deck with open ribs(SSD)is proposed in this paper,aiming to simplify the fabrication process as well as to reduce the cost of LWCD.Based on a long-span cable-stayed bridge,a design scheme is proposed and is compared with the conventional OSD scheme.Further,a finite element(FE)calculation is conducted to reflect both the global and local behavior of the SSD scheme,and it is found that the peaked stresses in the SSD components are less than the corresponding allowable values.A static test is performed for an SSD strip specimen to understand the anti-cracking behavior of the UHPC layer under negative bending moments.The static test results indicate that the UHPC layer exhibited a satisfactory tensile toughness,the UHPC tensile strength obtained from the test is 1.8 times the calculated stress by the FE model of the real bridge.In addition,the fatigue stresses of typical fatigue-prone details in the SSD are calculated and evaluated,and the influences of key design parameters on the fatigue performance of the SSD are analyzed.According to the fatigue results,the peaked stress ranges for all of the 10 fatigue-prone details are within the corresponding constant amplitude fatigue limits.Then a fatigue test is carried out for another SSD strip specimen to explore the fatigue behavior of the fillet weld between the longitudinal and transverse ribs.The specimen failed at the fillet weld after equivalent 47.5 million cycles of loading under the design fatigue stress range,indicating that the fatigue performance of the SSD could meet the fatigue design requirement.Theoretical calculations and experiments provide a basis for the promotion and application of this structure in bridge engineering.展开更多
Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing...Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.展开更多
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
基金Project(2013KJCX0014)supported by the Key Project of Department of Education of Guangdong Province,China
文摘Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.
文摘In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a geosynthetic strip(GS)and parts of a scrap truck tire as transverse members.The experimental pullout results for the CGS reinforcement were compared with the suggested theoretical equations and ordinary reinforcements,including the GS,the steel strip(SS),and the steel strip with rib(SSR).The pullout test results show that adding three transverse members to the GS reinforcement(CGS3)with S/H?6.6(where S and H are the space and height of the transverse members,respectively)increases pullout resistance by more than 120%,170%,and 50%compared to the GS,the SS,and the SSR,respectively.This result shows that the CGS3(CGS with three transverse members)reinforcement needs at least 55.5%,63%,and 33.3%smaller length compared to the GS,the SS,and the SSR,respectively.In general,implementation of mechanically stabilized earth wall(MSEW)with the proposed strip may help geotechnical engineers prevent costly designs and solve the problem of MSEW implementation in cases where there are limitations of space.
文摘In this paper an experimental study on damage tolerance behaviour of composite panels with softening strips is carried out. A prediction method of residual strength of panels with softening strips is proposed. The comparison between estimated and experimental results shows that the prediction method can be applied to design. In this paper the failure mechanisms are described.
基金This project is supported by National Natural Science Foundation of China(No19872011).
文摘A numerical method of integration of Green's functions of strip element method (SEM) is proposed The response of ultrasonic source generated by a transducer on the surface of a multi ply composite plate containing a delamination is analyzed by the use of SEM The numerical results show that the scanning features of the ultrasonic waves may be used to identify the delamination inside the composite plate.
文摘The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilayer composite coatings and thick monolayer coating of aluminium bronze, stainless steel and nickel-iron alloy were determined. The reason of decrement in internal stresses of multilayer composite coatings was discussed.
文摘The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples.
基金The authors gratefully thank the National Natural Science Foundation of China(Grant Nos.52038003 and 51778223)Technology R&D Plan of China Construction Fifth Engineering Division Co.,Ltd.(No.CSCES5b-2022-12)for their financial support.
文摘To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in 2010.Based on the successful application of that LWCD,an adaptation incorporating an innovative composite deck structure,i.e.,the hot-rolled section steel–UHPC composite deck with open ribs(SSD)is proposed in this paper,aiming to simplify the fabrication process as well as to reduce the cost of LWCD.Based on a long-span cable-stayed bridge,a design scheme is proposed and is compared with the conventional OSD scheme.Further,a finite element(FE)calculation is conducted to reflect both the global and local behavior of the SSD scheme,and it is found that the peaked stresses in the SSD components are less than the corresponding allowable values.A static test is performed for an SSD strip specimen to understand the anti-cracking behavior of the UHPC layer under negative bending moments.The static test results indicate that the UHPC layer exhibited a satisfactory tensile toughness,the UHPC tensile strength obtained from the test is 1.8 times the calculated stress by the FE model of the real bridge.In addition,the fatigue stresses of typical fatigue-prone details in the SSD are calculated and evaluated,and the influences of key design parameters on the fatigue performance of the SSD are analyzed.According to the fatigue results,the peaked stress ranges for all of the 10 fatigue-prone details are within the corresponding constant amplitude fatigue limits.Then a fatigue test is carried out for another SSD strip specimen to explore the fatigue behavior of the fillet weld between the longitudinal and transverse ribs.The specimen failed at the fillet weld after equivalent 47.5 million cycles of loading under the design fatigue stress range,indicating that the fatigue performance of the SSD could meet the fatigue design requirement.Theoretical calculations and experiments provide a basis for the promotion and application of this structure in bridge engineering.
基金supported by the Australian Research Council Discovery Projects(grant nos.DP200103315,DP200103332,DP220103669,and DP230100685)Linkage Projects(grant no.LP220200920).
文摘Solid-state electrolytes(SSEs)are a solution to safety issues related to flammable organic electrolytes for Li batteries.Insufficient contact between the anode and SSE results in high interface resistance,thus causing the batteries to exhibit high charging and discharging overpotentials.Recently,we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode.The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases.Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode(Li-FeZnNC).The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC(without Zn modification)and Li-symmetric cells.The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h.Full batteries with a Li-FeZnNC composite anode,garnet-type SSE,and LiFePO4 cathode show low charging and discharging overpotentials,a capacity of 152 mAh g^(−1),and high stability for 200 cycles.