期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Additive Effects of Rare-Earth Ions in Sodium Aluminoborate Glasses Using <sup>23</sup>Na and <sup>27</sup>Al Magic Angle Spinning Nuclear Magnetic Resonance
1
作者 Shunichi Kaneko Yomei Tokuda Hirokazu Masai 《New Journal of Glass and Ceramics》 2017年第3期58-76,共19页
We conducted structural analysis of xNa2O-yY2O3-5B2O3-3Al2O3 and xNa2O-yLa2O3-5B2O3-3Al2O3 glasses to elucidate the additive effects of rare-earth ions in these sodium aluminoborate glasses, and investigated the local... We conducted structural analysis of xNa2O-yY2O3-5B2O3-3Al2O3 and xNa2O-yLa2O3-5B2O3-3Al2O3 glasses to elucidate the additive effects of rare-earth ions in these sodium aluminoborate glasses, and investigated the local environment surrounding Na+ in them by using 23Na and 27Al magic angle spinning?nuclear magnetic resonance (MAS NMR) spectroscopy. The amount of higher-coordinated Al species ([5]Al and [6]Al) gradually increased in response to an increase in the ratios of Y2O3 to Al2O3 and La2O3 to Al2O3 in each type of glass, respectively. Moreover, the difference in the cation field strength (CFS) between Y3+ and La3+ was observed to affect the generation of [5]Al and [6]Al, especially when the amount of these ions in the glasses increased. In addition to the above, the coordination number of Na+ ions increased with an increase in the number of rare earth ions, confirmed by comparing results with NMR spectra of crystalline Na2Al2B2O7. The latter possibly occurred due to the oxygen concentration on Al[5] and Al[6]. Finally, it was confirmed that the formation of [5]Al and [6]Al decreases molar volume in oxide glasses, which might be partially due to better atomic packing of [5]Al and [6]Al. 展开更多
关键词 NMR aluminoborate RARE-EARTH
下载PDF
Fe doped aluminoborate PKU-1 catalysts for the ketalization of glycerol to solketal: Unveiling the effects of iron composition and boron
2
作者 Weilu Wang Xiangke Zeng +7 位作者 Yanliu Dang Ping Ouyang Haidong Zhang Guangming Jiang Fan Dong Tao Yang Steven L.Suib Yang He 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1346-1352,共7页
An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and r... An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and recyclable ability in the ketalization of glycerol to Solketal with acetone at 318 K has been developed. Our study demonstrated that the structure of Fe (less agglomerated iron species vs. FeO clusters) can be tuned by changing Fe loading in the PKU-1 material, which correlated well with experimental observations. Furthermore, the surface boron sites were promoted by iron loading and behaved as Lewis-acid sites to facilitate the reaction process of glycerol ketalization, while the Solketal selectivity was closely related with the structure of iron species in PKU-1, which was proved by kinetic studies, density function theory (DFT) calculations, and a series of spectroscopy studies. This investigation demonstrates that the surface B sites can play important roles in the reaction instead of being spectators. 展开更多
关键词 Fe doping aluminoborate Glycerol recycling KETALIZATION Boron reaction sites Lewis-acid dominating catalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部