期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al–Zn–Mg alloys
1
作者 Rocio Ochoa Alfredo Flores Jesus Torres 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期458-465,共8页
The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content ... The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450?500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied. 展开更多
关键词 aluminothermic reduction alkaline batteries zinc oxide waste utilization aluminum zinc magnesium alloys
下载PDF
Synthesis of substitutional hexaboride of lanthanum and cerium La_(1-x)Ce_(x)B_(6) via aluminothermic reduction
2
作者 Yu Wang Xiao-Hui Yang +1 位作者 Jian Cui Guo-Hua Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第11期1780-1788,I0005,共10页
Rare-earth hexaborides(REB_(6))are vital raw materials for cathode materials and high temperature structural ceramics that are widely applied as high-frequency electron tubes and ceramics adaptive for extreme environm... Rare-earth hexaborides(REB_(6))are vital raw materials for cathode materials and high temperature structural ceramics that are widely applied as high-frequency electron tubes and ceramics adaptive for extreme environment,respectively.In this work,single phase substitutional solid solution REB_(6)(LaB_(6),La_(0.75)Ce_(0.25)B_(6).La_(0.5)Ce_(0.5)B_(6),La_(0.25)Ce_(0.75)B_(6) and CeB_(6))powders were prepared with the raw materials of La_(2)O_(3),CeO_(2),B_(4)C and Al powders,after calcining at 1773 K for 4 h and the following alkaline leaching.All substitutional solid solution products have homogeneous distributions of La and Ce in particles.Through microscopic morphology analysis,it is discovered that the formation of solid solution is beneficial for reducing the particle size of product,relative to LaB_(6) and CeB_(6).Moreover,Al flux plays an important role in decarbonizing reaction,and C contents of all products are below 0.4 wt%. 展开更多
关键词 HEXABORIDE Substitutional solid solution aluminothermic reduction Rare earths
原文传递
Preparation of Al-Hf master alloy by aluminothermic reduction of HfO_(2)
3
作者 Hai Liu Zhao-Hui Ma +3 位作者 Jing-Cun Huang Jian-Dong Zhang Guo-Qing Yan Li-Jun Wang 《Rare Metals》 SCIE EI CAS CSCD 2021年第12期3645-3650,共6页
The Al-Hf alloy was prepared by open aluminothermic reduction of HfO_(2) using CaF_(2) and Na F as the flux. The influence of the slag composition, the amount of aluminum, and the heat energizer was studied detailly t... The Al-Hf alloy was prepared by open aluminothermic reduction of HfO_(2) using CaF_(2) and Na F as the flux. The influence of the slag composition, the amount of aluminum, and the heat energizer was studied detailly to establish optimum conditions for the sufficient recovery of the alloy and the complete slag-alloy separation. The Al-Hf alloy with 40 wt% Hf was obtained by this method, and the maximum recovery was 70.7%. The microstructure of the alloy was observed by scanning electron microscope(SEM). Moreover, X-ray diffraction(XRD) analysis and energy-disperse spectrometry(EDS) were applied to characterize the formation of the phases. The results show that the alloy consists of Al and Al_(3)Hf phases and the oxygen content is about 0.2 wt%. 展开更多
关键词 Al-Hf master alloy aluminothermic reduction Hafnium oxide Slag-alloy separation
原文传递
The Role of Preliminary Mechanical Activation in the Process of Obtaining Pow-der-Like Ferrosilicium from Metallurgical Slags
4
作者 Vilena Hakob Martirosyan Marine Eduard Sasuntsyan 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第2期11-17,共7页
Powder iron monosilicide with certain structure exhibits magnetic properties and can be used as an alloying additive in the production of electrical steels and silicon alloys with special physical and chemical propert... Powder iron monosilicide with certain structure exhibits magnetic properties and can be used as an alloying additive in the production of electrical steels and silicon alloys with special physical and chemical properties. From this point of view, development of the energy-saving technology for receiving such a valuable alloying agent with the disposal of secondary waste is an urgent task. For this purpose, the method of joint aluminothermic reduction of preliminary mechanically activated metallurgical waste is offered. Recently, a method for combining the self-propagating high-temperature synthesis and preliminary mechanical activation for obtaining metal powders with certain phase composition and structure is considered as one of the efficient ones. As the initial materials for obtaining iron monosilicide, the waste (or converter) slags of the Alaverdi copper-smelting plant and molybdenum slags of the Yerevan Pure Iron Plant are used. Besides the mentioned slags, NaNO<sub>3</sub> and CaO are added. Properties and structure of the received silicide depend on the contents, quantity of components, and the mass relation of two wastes in the burden. Therefore, the processes of structure formation of the iron monosilicide received from metallurgical waste are investigated. Studies have shown that the best results are obtained in case of waste and molybdenum slag relation of 4:1, when the 60-minute grinding in the vibromill leads to a significant increase in the mechanical activation of the burden. At this relation of FeO and SiO2, a condition is created for receiving iron monosilicide showing magnetic properties. On the whole, those transformations lead to a decrease in the reaction activation power of the interacting substances, an increase of the reactivity capacities, as well as to a new original course of reactions and new modified materials. 展开更多
关键词 Mechanochemical Activation Copper Concentrate Silicon Concentrate SLAG GRINDING Vibromill aluminothermic reduction
下载PDF
Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity 被引量:1
5
作者 Aobo Hu Shuizhou Cai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第19期62-72,共11页
In this study,Al-30W(wt.%)alloy powder was prepared by Aluminothermic reduction and hightemperature gas atomization.We then studied the phase composition,surface morphology,spatial phase structure,and thermal oxidatio... In this study,Al-30W(wt.%)alloy powder was prepared by Aluminothermic reduction and hightemperature gas atomization.We then studied the phase composition,surface morphology,spatial phase structure,and thermal oxidation process using XRD,SEM/EDS,TEM,DSC,and DTA/TG analysis.The results showed that the Al-30W alloy powder exhibited high sphericity,and the interior presented a special spatial phase structure in which the Al/W amorphous alloy phase and the metastable Al/W intermetallic compound phase were distributed in the pure Al matrix.When the Al-30W alloy powder was stabilized in a vacuum tube furnace,the spatial phase structure of the alloy powder changed,and a small amount of pure Al was embedded in the Al_(12)W matrix.The resulting Al-30W alloy powder products,treated in air at different temperatures,were collected in situ and characterized.The results presented that with an increase in temperature,the types and morphologies of the Al/W intermetallic compounds in the Al-30W alloy powder changed.Furthermore,the Al-30W alloy powder began to undergo intense oxidation reactions at about 900℃,accompanied by a concentrated energy release and rapid weight gain.The volatilization of WO_(3)produced in the oxidation process promoted the complete oxidation of the Al-30W alloy powder,and the Al-30W alloy powder was completely oxidized at 1300℃.At this stage,all W atoms were transformed into gaseous WO_(3),and only a large number of small Al_(2)O_(3)fragments remained in the oxidation product.Thus,the Al-30W alloy powder exhibited excellent thermal reactivity and oxidation integrity,and may offer excellent application prospects in the field of energetic materials. 展开更多
关键词 aluminothermic reduction High-temperature gas atomization Al/W amorphous alloy phase Metastable Al/W intermetallic compound phase Thermal oxidation process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部