Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ...Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.展开更多
Two laminated composites, 2024/3003 and 7075/6009 aluminum alloys were prepared by double-stream-pouring continuous casting (DSPCC) followed by plastic deformation and heat treatment. The interface characteristics bet...Two laminated composites, 2024/3003 and 7075/6009 aluminum alloys were prepared by double-stream-pouring continuous casting (DSPCC) followed by plastic deformation and heat treatment. The interface characteristics between the external and internal layers of the composites in the as-cast and plastic deformation conditions were analyzed. The results show that the macrostructure difference between the external and internal layers of both composite ingots in the as-cast condition can be clearly clarified but the gradient interfaces are not distinct. However, the macro-scale gradient layers can be demonstrated from the hardness distribution in the cross sections of the composite ingots. After plastic deformation, the gradient characteristic of the interface in the laminated composites maintains except for the decrease in the interface thickness. After plastic deformation and T6 heat treatment, the ultimate strength, yield strength and elongation of 2024/3003 composite plate are 2.35, 3.10 and 0.9 times of that of 3003 aluminum alloy, respectively. The ultimate strength and yield strength of 7075/6009 composite plate increase 47 % and 82 % of that of 6009 aluminum alloy, respectively and the elongation of the composite is still as high as 15.3 %.展开更多
GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A38...GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time.展开更多
基金Project(51675538)supported by the National Natural Science Foundation of China。
文摘Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.
基金Supported by Natural Science Foundation of China (Granted No 50575076, No 59905007)Guangdong Provincial Natural Science Foundation of China (Granted No 994250)Program for New Century Excellent Talents in University (Granted No NCET-07-0310)
文摘Two laminated composites, 2024/3003 and 7075/6009 aluminum alloys were prepared by double-stream-pouring continuous casting (DSPCC) followed by plastic deformation and heat treatment. The interface characteristics between the external and internal layers of the composites in the as-cast and plastic deformation conditions were analyzed. The results show that the macrostructure difference between the external and internal layers of both composite ingots in the as-cast condition can be clearly clarified but the gradient interfaces are not distinct. However, the macro-scale gradient layers can be demonstrated from the hardness distribution in the cross sections of the composite ingots. After plastic deformation, the gradient characteristic of the interface in the laminated composites maintains except for the decrease in the interface thickness. After plastic deformation and T6 heat treatment, the ultimate strength, yield strength and elongation of 2024/3003 composite plate are 2.35, 3.10 and 0.9 times of that of 3003 aluminum alloy, respectively. The ultimate strength and yield strength of 7075/6009 composite plate increase 47 % and 82 % of that of 6009 aluminum alloy, respectively and the elongation of the composite is still as high as 15.3 %.
基金the Royal Netherlands Academy of Science and Arts(KNAW)(No.10CDP026)the National Outstanding Young Scientist Foundation of China (No.50825401)the National Natural Science Foundation of China(No.50821003)
文摘GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time.