期刊文献+
共找到1,509篇文章
< 1 2 76 >
每页显示 20 50 100
Structure and mechanical properties of aluminum alloy/Ag interlayer/steel non-centered electron beam welded joints 被引量:6
1
作者 张秉刚 陈国庆 +1 位作者 张春光 倪家强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2592-2596,共5页
Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the el... Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer. 展开更多
关键词 aluminum alloy steel Ag interlayer non-centered electron beam welding joint
下载PDF
A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel 被引量:3
2
作者 Yuan-zhi Zhu Jian-ping XU 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期821-826,共6页
A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the... A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the content of arsenic has great effect on grain growth and phase transformation at high temperature. When the arsenic content is no more than lwt%, there is no obvious grain growth and no obvious ferrite transitional region formed at the diffusion interface. However, when the arsenic content is no less than 5wt%, the grain grows very rapidly. In addition, the arsenic-enriched ferrite transitional layer forms at the diffusion interface in the hot-rolling process, which results from a slower diffusion rate of arsenic atoms than that of carbon in ferrite. 展开更多
关键词 low carbon steel alloy steel ARSENIC diffusion bonding phase transformation grain growth
下载PDF
Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld 被引量:3
3
作者 M.DEHGHANI S.A.A.AKBARI MOUSAVI A.AMADEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1957-1965,共9页
Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate ... Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8. 展开更多
关键词 friction stir welding dissimilar joining microstructure tensile strength aluminum alloy carbon steel intermetallic compound
下载PDF
Improving pulsed laser weldability of duplex stainless steel to 5456 aluminum alloy via friction stir process reinforcing of aluminum by BNi-2 brazing alloy 被引量:6
4
作者 Hossein ESMAILY Ali HABIBOLAHZADEH Mohammad TAJALLY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1401-1412,共12页
Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ... Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones. 展开更多
关键词 duplex stainless steel (DSS) Al5456 aluminum alloy BNi-2 brazing alloy friction stir processing pulsed laser welding
下载PDF
Experimental study on dissimilar TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel 被引量:3
5
作者 林三宝 宋建岭 +2 位作者 杨春利 范成磊 张东卫 《China Welding》 EI CAS 2010年第1期26-31,共6页
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructure... Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer. 展开更多
关键词 TIG welding-brazing aluminum alloy stainless steel microstructure tensile strength
下载PDF
Interfacial characterization of resistance spot welded joint of steel and aluminum alloy 被引量:3
6
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 邱小明 陈庆雷 《China Welding》 EI CAS 2010年第4期6-10,共5页
The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/... The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 mm. The interfacial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property. 展开更多
关键词 high strength steel aluminum alloy resistance spot welded joint interfacial characterization
下载PDF
Effects of nugget alloying on microstructures and properties of resistance spot welded joints of aluminum and steel 被引量:2
7
作者 Zhang Yueying Sun Daqian +2 位作者 Li Hongmei Gu Xiaoyan Liu Yanjun 《China Welding》 EI CAS 2016年第3期36-41,共6页
The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted main... The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted mainly of α-Al solid solution with dislocations and fine Mg2Si particles. The interface zone had a double-layer structure: Fe2Al5 layer at steel side and Fe4Al13 layer at Al nugget side. The nugget alloying has a significant effect on the joint properties by changing phase composition and refinement of grains. When alloy elements Cu, Zn, Ti and Ni were added, the tensile shear load of Al-steel joints reached 2 780 N, 2 910 N, 2 915 N and 2 929 N respectively, which increased by 24. 1%, 29.9%, 30. 1% and 30. 7% respectively compared with that (2 241 N) of joint without nugget alloying. Therefore, it is an effective way for improving mechanical properties of resistance spot welded Al-steel joints. 展开更多
关键词 6063-T6 aluminum alloy 16Mn steel resistance spot welding nugget alloying
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
8
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
Tribological Properties of Dimpled Surface Alloying Layer on Carbon Steel 被引量:2
9
作者 万轶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期218-222,共5页
The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and... The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricating state
下载PDF
Microstructure and Corrosion Resistance of CrN and CrN/TiN Coated Heat-Resistant Steels in Molten Aluminum Alloy 被引量:1
10
作者 LinCS PengH 《特种铸造及有色合金》 CAS CSCD 北大核心 2001年第S1期168-171,共4页
The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ... The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva... 展开更多
关键词 CRN CrN/TiN heat-resistant steels MICROSTRUCTURE Corrosion Resistance Molten aluminum alloy
下载PDF
Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing 被引量:1
11
作者 葛佳棋 王克鸿 +1 位作者 ZHANG Deku WANG Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期601-606,共6页
Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of opti... Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously. 展开更多
关键词 45 steel stud 6 061 aluminum alloy high frequency induction brazing dissimilar metaljoint mechanical property microstructure
下载PDF
Analysis on interfacial layer of aluminum alloy and non-coated stainless steel joint made by TIG welding-brazing 被引量:1
12
作者 宋建岭 林三宝 +2 位作者 杨春利 马广超 王寅杰 《China Welding》 EI CAS 2009年第2期1-5,共5页
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (... Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side. 展开更多
关键词 aluminum alloy stainless steel TIG welding-brazing interfacial layer intermetallic compound
下载PDF
Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions 被引量:1
13
作者 Jing Ming Jin-jie Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期494-504,共11页
The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated.The chloride threshold values of steels were determined on... The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated.The chloride threshold values of steels were determined on the basis of corrosion potential(Ecorr)and polarization resistance(Rp).Moreover,the chloride-induced corrosion behavior of steels was evaluated using electrochemical impedance spectroscopy,cyclic voltammetry,cathodic potentiodynamic polarization,and scanning electron microscopy/energy dispersive X-ray spectroscopy measurements.Alloy steels have higher chloride resistance than low-carbon steel in carbonated and non-carbonated concrete pore solutions.The chloride resistance of alloy steels improves with increasing Cr content.In addition,the chloride resistance of all steels is negatively affected by the carbonation of concrete pore solution,especially for alloy steel with high Cr content in the presence of high chloride content. 展开更多
关键词 alloy steel concrete PORE solution carbonATION CHLORIDE RESISTANCE ELECTROCHEMICAL measurements
下载PDF
Abrasive Wear Characteristics of Carbon and Low Alloy Steels for Better Performance of Farm Implements 被引量:2
14
作者 M.Kumar and R. C Gupta(Centre of Advanced Study, Dept. of Metallurgical Engineering, Institute of Technology,Banaras Hindu University, Vaanasi -221 005, India) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期91-96,共6页
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves... The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools. 展开更多
关键词 Abrasive Wear Characteristics of carbon and Low alloy steels for Better Performance of Farm Implements MPA
下载PDF
Carbon Equivalent Fundamentals in Evaluating the Weldability of Microalloy and Low Alloy Steels 被引量:2
15
作者 Munkaila Alhassan Yussif Bashiru 《World Journal of Engineering and Technology》 2021年第4期782-792,共11页
Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style... Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with. 展开更多
关键词 carbon Equivalent Evaluation of Weldability Microalloy steel Low alloy steel Chemical Composition
下载PDF
High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics 被引量:9
16
作者 MAYong-qing GAOHong-tao QIYu-hong ZHANGZhan-Ping DAIYu-mei LIUYan-xia 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期117-121,共5页
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ... Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives. 展开更多
关键词 超细硬质合金 高碳钢 结构设计 成分设计
下载PDF
Influence of soaking time in deep cryogenic treatment on the microstructure and mechanical properties of low-alloy medium-carbon HY-TUF steel 被引量:1
17
作者 Ahmad Zare S.R.Hosseini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期658-666,共9页
The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distributio... The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend. 展开更多
关键词 low alloy steel medium carbon steel cryogenic treatment microstructure mechanical properties fractography
下载PDF
Effects of high pressure treating on the phase transformation kinetics of austenite to pearlite in low carbon and low alloy steel 被引量:5
18
作者 HAN Zhen-li 《材料科学与工程(中英文版)》 2007年第1期61-66,共6页
关键词 相变动力学 低合金钢 奥氏体 低碳钢 高压力 珠光体 治疗 Avrami指数
下载PDF
Analysis of Coating Microstructure of Hot-Dip Aluminum of Deformed Low-Carbon Steel Containing Rare Earth 被引量:1
19
作者 范力茹 刘琳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期460-463,共4页
The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show tha... The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed. 展开更多
关键词 deformed low-carbon steel hot-dip aluminum (HDA) the coating microstructure rare earths
下载PDF
Effect of high pressure treatment on solid-state phase transformation in low carbon alloy steel during heating process 被引量:2
20
作者 XIE Dan-yang WU Hong-lian +1 位作者 LIU Jian-hua ZHANG Rui-jun 《材料科学与工程(中英文版)》 2009年第6期24-27,43,共5页
关键词 低碳合金钢 固态相变 高压处理 加热过程 微观结构变化 动力学 低温区 珠光体
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部