期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructures and mechanical properties of MgAl_2O_4 particle-reinforced AC4C aluminum composites
1
作者 Tateoki IIZUKA 欧阳求保 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2337-2345,共9页
MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were inves... MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were investigated, and the microstructures, strength, and fatigue properties of MgAl2O4 particle-reinforced AC4C based alloy composites were evaluated. Tensile strength in the MgAl2O4 particle-reinforced AC4C based alloy composite was increased by using the classified particles. The fatigue limit at 107 cycles in the MgA1204 particle-reinforced AC4C-Cu composite increased by 27% compared to the unreinforced alloy at 250 ~C. Dislocations were observed in the matrix around the MgAl204 particle which resulted from the mismatch of thermal expansion coefficients between MgAl2O4 and Al, and resisted failure and caused fatigue cracks to propagate around the MgAl2O4 particles, resulting in extensive crack deflection and crack bowing which contributed to the improvement of fatigue strength. 展开更多
关键词 MgAl2O4 particle AC4C based aluminum alloy classification of particles composite fatigue tensile strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部