期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Effect of partition coefficient on microsegregation during solidification of aluminium alloys 被引量:5
1
作者 M.H.Avazkonandeh-Gharavol M.Haddad-Sabzevar H.Fredriksson 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第10期980-989,共10页
In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition ... In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum--copper alloys. The sam- ples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidifica- tion. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experi- mental profiles, compared to those calculated using the equilibrium partition coefficients. 展开更多
关键词 aluminum copper alloys SOLIDIFICATION partition coefficient MICROSEGREGATION numerical modeling differential thermal analysis
下载PDF
EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PSEUDOELASTIC HYSTERESIS IN SHAPE MEMORY ALLOYS
2
作者 Gong, S.K. Xu, H.B. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第3期235-240,共6页
The pseudoelastic hysteresis loop associated with phase equilibrium and the stress relaxation on the yield line were investigated, and the theoretical description was confirmed by deformation controlled load-deformati... The pseudoelastic hysteresis loop associated with phase equilibrium and the stress relaxation on the yield line were investigated, and the theoretical description was confirmed by deformation controlled load-deformation measurements on CuZnAl single crystals. It was found that in a loading-unloading process, the states of shape memory alloys run through a hysteresis loop, and the points that trigger the internal yield and recovery inside the pseudoelastic hysteresis loop define a line that traverses the hysteresis loop from the upper left to the lower right corner. This line was interpreted as a line of unstable phase equilibrium according to the thermodynamic arguments, which determines also the tendency for stress relaxation on the yield line section and for a stress growth on the recovery line section. 展开更多
关键词 aluminum copper alloys HYSTERESIS Stress relaxation
下载PDF
Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si 被引量:6
3
作者 Khalil Ganjehfard Reza Taghiabadi +1 位作者 Mohammad Talafi Noghani Mohammad Hossein Ghoncheh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期718-728,共11页
This study was undertaken to investigate the tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe(up to 1.5 wt%)and Si(up to 2.5 wt%).According to the results,the optimum tensil... This study was undertaken to investigate the tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe(up to 1.5 wt%)and Si(up to 2.5 wt%).According to the results,the optimum tensile properties and hot tearing resistance were achieved at Fe/Si mass ratio of 1,where theα-Fe phase was the dominant Fe compound.Increasing the Fe/Si mass ratio above unity increased the amounts of detrimentalβ-Cu Fe platelets in the microstructure,deteriorating the tensile properties and hot tearing resistance.Decreasing the mass ratio below unity increased the size and fraction of Si needles and micropores in the microstructure,also impairing the tensile properties and hot tearing resistance.The investigation of hot-torn surfaces revealed that theβ-Cu Fe platelets disrupted the tear healing phenomenon by blocking interdendritic feeding channels,while theα-Fe intermetallics improved the hot tearing resistivity due to their compact morphology and high melting point. 展开更多
关键词 aluminumcopper alloys CASTABILITY FLUIDITY hot tearing susceptibility
下载PDF
Effect of homogenization process on the hardness of Zn-Al-Cu alloys 被引量:1
4
作者 Jose D.Villegas-Cardenas Maribel L.Saucedo-Munoz +3 位作者 Victor M.Lopez-Hirata Antonio De Ita-De la Torre Erika O.Avila-Davila Jorge Luis Gonzalez-Velazquez 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第10期1076-1081,共6页
The effect of a homogenizing treatment on the hardness of as-cast Zn–Al–Cu alloys was investigated. Eight alloy compositions were prepared and homogenized at 350 °C for 180 h, and their Rockwell 'B' har... The effect of a homogenizing treatment on the hardness of as-cast Zn–Al–Cu alloys was investigated. Eight alloy compositions were prepared and homogenized at 350 °C for 180 h, and their Rockwell 'B' hardness was subsequently measured. All the specimens were analyzed by X-ray diffraction and metallographically prepared for observation by optical microscopy and scanning electron microscopy. The results of the present work indicated that the hardness of both alloys(as-cast and homogenized) increased with increasing Al and Cu contents; this increased hardness is likely related to the presence of the θ and τ′ phases. A regression equation was obtained to determine the hardness of the homogenized alloys as a function of their chemical composition and processing parameters, such as homogenization time and temperature, used in their preparation. 展开更多
关键词 zinc–aluminumcopper alloys CASTING HARDNESS HOMOGENIZATION PHASES microstructure
下载PDF
Influence of oxidant KMnO_4 on film-forming process of rare earth metal conversion coating on LY12 aluminum alloy 被引量:1
5
作者 TianzhuGao JiuqingLi 《Journal of University of Science and Technology Beijing》 CSCD 2002年第3期216-220,共5页
A Cu/Al galvanic couple was established to study the influence of the oxidantKMnO_4 on the film-forming process of rare earth metal (REM) conversion coating on LY12 aluminumalloy. It is found that the galvanic couple ... A Cu/Al galvanic couple was established to study the influence of the oxidantKMnO_4 on the film-forming process of rare earth metal (REM) conversion coating on LY12 aluminumalloy. It is found that the galvanic couple simulative experiment accords with the actual immersion,and it can be substantially used to simulate the behavior of LY12 aluminum alloy in thefilm-forming process. It is showed that the formation of the coating is quickened in CeCl_3 solutioncontaining KMnO_4 compared with that not containing KMnO_4. XPS results reveal that the coatingformed on cathode is composed of oxide or hydroxide of Ce and Mn, so the mechanism of formation ofREM conversion coating changes when KMnO4 is added. 展开更多
关键词 copper containing aluminum alloy rare earth metal conversion coating galvanic couple simulative experiment
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
6
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Effect of Solution Heat Treatment in α+β Phase Region on Shape Memory Characteristics of Cu-Al-Ni-Mn-Ti Alloys
7
作者 千东范 《Rare Metals》 SCIE EI CAS CSCD 1992年第1期6-12,共7页
The effect of aluminium content and solution heat treatment in α+β phase region on the shape memory characteristics and mechanical properties of cold wrought Cu-Al-Ni-Mn-Ti alloy are studied in this paper. Results i... The effect of aluminium content and solution heat treatment in α+β phase region on the shape memory characteristics and mechanical properties of cold wrought Cu-Al-Ni-Mn-Ti alloy are studied in this paper. Results indicate that the transformation temperature (Tt) of Cu-Al-Ni-Mn-Ti alloy reduces obviously with the increase of the amount of α-phase. During aging at 623 K, Tt increases at first up to a peak value, then decreases with prolongation of aging time. Life time of heat resistance of the alloy at high temperatures is improved with increase of the amount of α-phase, this life time becomes poor with Bainite precipitation. When the amount of α-phase is less than 5%, the ratio of shape recovery brought about by the solution heat treatment in α+β phase region is almost not effected. However, plasticity of the alloy increases obviously as aluminium content decreases. We believe that improving cold workability of Cu-Al-Ni-Mn-Ti alloy and keeping good heat resistant property and shape memory effects are possible by means of reducing the content of aluminium and solulion heat treatment in α+β phase region. 展开更多
关键词 aluminum Content copper aluminum Nickel Manganese Titanium alloys Mechanical Properties Materials with Memory Metal Forming Cold Working
下载PDF
Microstructure and properties characteristic during interrupted multi-step aging in Al-Cu-Mg-Ag-Zr alloy 被引量:4
8
作者 ZHUBaohong XIONG Baiqing ZHANG Yong'an ZHANG Jianbo WANG Feng LI Zhihui 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期419-423,共5页
The effects of interrupted multi-step aging on the microstructure and properties of A1-Cu-Mg-Ag-Zr alloy were studied by tensile, hardness, electrical conductivity tests and transmission electron microscopy (TEM). I... The effects of interrupted multi-step aging on the microstructure and properties of A1-Cu-Mg-Ag-Zr alloy were studied by tensile, hardness, electrical conductivity tests and transmission electron microscopy (TEM). Interrupted multi-step aging delayed the peak aging time compared to one-step aging and kept the same levels of hardness, electrical conductivity, ultimate tensile strength (UTS), yield strength (YS) and elongation as those of the T6 temper alloy while increased the fracture toughness notably. Ω phase and a little θ' phase precipitated and grew simultaneously in the process of one-step aging at 160℃. During the second-step aging at 65℃ of interrupted multi-step aging, no TEM characteristic of Ω precipitates could be found. During the third step of interrupted multi-step aging, Ω began to dominate the microstructure like what happened in the process of one-step aging. The difference of properties between the T6 temper and the interrupted multi-step aged alloys might be related to the different precipitation sequences in the process of the two heat treatment technologies. 展开更多
关键词 aluminum copper alloys heat treatment microstructure fracture toughness AGING
下载PDF
Effect of rare earth samarium addition on the kinetics of precipitation in Al-Cu-Mn casting alloy 被引量:2
9
作者 Zhong-wei Chen Ming-jun Tang Kai Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第2期155-161,共7页
The mechanical properties of Al-Cu-Mn casting alloy mainly depend on the morphology, distribution, size, and number ofθ′(Al2Cu) precipitates. In this study, we have analyzed the effect of rare earth samarium (Sm... The mechanical properties of Al-Cu-Mn casting alloy mainly depend on the morphology, distribution, size, and number ofθ′(Al2Cu) precipitates. In this study, we have analyzed the effect of rare earth samarium (Sm) addition on the kinetics of precipitation in the Al-Cu-Mn casting alloy by using differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy. Thermal ef-fect peaks that are attributed to the formation and the dissolution of Guinier-Preston (GP) zone andθ′phase were identified from the DSC curves. The activation energy ofθ′formation was calculated by using both the Kissinger method and the analytical model, and the corre-sponding results were compared. Results suggest that the activation energy ofθ′formation in Al-Cu-Mn alloy is dramatically higher than that in Al-Cu-Mn-Sm alloy. Accordingly, it is concluded that the addition of rare earth Sm decreases the activation energy ofθ′formation and promotes the formation ofθ′precipitates. 展开更多
关键词 aluminum copper alloys rare earth additions SAMARIUM PRECIPITATION KINETICS
下载PDF
Microstructure and properties of an Al–Ti–Cu–Si brazing alloy for SiC–metal joining 被引量:1
10
作者 Chun-duo Dai Rui-na Ma +2 位作者 Wei Wang Xiao-ming Cao Yan Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期557-565,共9页
An Al–Ti–Cu–Si solid–liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500–600°C was designed for SiC–metal joining. The microstructure, phases, differe... An Al–Ti–Cu–Si solid–liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500–600°C was designed for SiC–metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al–8.5Ti–5Cu–10Si alloy is mainly composed of Al–Al2Cu and Al–Si hypoeutectic low-melting-point microstructures (493–586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3phase at the interface is suppressed by the addition of 10wt% Si to the alloy. ? 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 alloys aluminum copper alloys Ceramic materials Differential scanning calorimetry INTERMETALLICS Joining Melting point Metals Microstructure Scanning electron microscopy Silicon Silicon alloys Silicon carbide Soldering alloys Titanium alloys WETTING X ray diffraction analysis
下载PDF
Improved strength and ductility of high alloy containing Al–12Zn–3Mg–2.5Cu alloy by combining non-isothermal step rolling and cold rolling 被引量:1
11
作者 V.V.Ravikumar S.Kumaran 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期179-185,共7页
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in th... Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility. 展开更多
关键词 aluminum zinc magnesium copper alloys NON-ISOTHERMAL cold rolling mechanical properties intermetallic compounds struc-ture defects
下载PDF
Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy 被引量:3
12
作者 Ji-li Liu Hai-you Huang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1157-1166,共10页
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ... The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments. 展开更多
关键词 copper aluminum manganese alloys shape memory effect columnar grains aging bainite superelasticity
下载PDF
Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique
13
作者 Dong-yue Li Shu-ling Zhang +2 位作者 Wei-bing Liao Gui-hong Geng Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期928-933,共6页
In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transfo... In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy(SEM) and a dynamic mechanical analyzer(DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation. 展开更多
关键词 copper nickel aluminum alloys shape memory effect melt extraction method superelasticity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部