A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanor...A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.展开更多
Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance impr...Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance improvement of the BOLEDs having a capping layer inserted between the semitransparent anode and the glass substrate is studied. The optimized microcavity BOLED shows a current efficiency (5.49cd/A) enhancement of 10% compared with a conventional BOLED based on ITO (5.0cd/A). Slight color variation is observed in 120° forward viewing angle with 5Onto BCP as the capping layer. Strong dependence of efficiency on A1 anode thickness and the thickness and refractor index of the capping layer is explained. The results indicate that the BOLEDs with the double-aluminum electrode have potential practical applications.展开更多
The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical te...The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical techniques including cyclic voltammetry, chronopotentiometry and chronoamperometry. The reduction reaction is found involving a nucleation process on the aluminum electrode. The results of chronopotentiometry indicate that the process of lithium incorporation in aluminum is smooth and uniform. The galvanostatic cycle experiments show that the coulombic efficiency is very low in the first cycle, which is mainly due to the "retention capacity" of Li-Al alloys. This characteristic is testified by the results of XRD and SEM. The results of chronoamperometry indicate that the incorporation of lithium into aluminum for the formation of a-phase Li-Al alloy is limited by its diffusion rate, with a measured diffusion coefficient of 1.8× 10^-10 cm2/s.展开更多
Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel...Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(Ⅱ) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with the two soluble electrodes (mild steel and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first followed by the filter and finally by the aluminum electrodes, the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.展开更多
基金CSIR (09/0810 (0021)/ 2012-EMR-I), Periyar University for providing fundUGC networking resource center for providing visiting fellowship
文摘A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.
基金Supported by the Nanjing University of Telecommunications and Posts under Grant Nos NY212010 and NY212034the National Natural Science Foundation of China under Grant Nos 91233117 and 51333007+2 种基金the Natural Science Fund in Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance improvement of the BOLEDs having a capping layer inserted between the semitransparent anode and the glass substrate is studied. The optimized microcavity BOLED shows a current efficiency (5.49cd/A) enhancement of 10% compared with a conventional BOLED based on ITO (5.0cd/A). Slight color variation is observed in 120° forward viewing angle with 5Onto BCP as the capping layer. Strong dependence of efficiency on A1 anode thickness and the thickness and refractor index of the capping layer is explained. The results indicate that the BOLEDs with the double-aluminum electrode have potential practical applications.
基金Project (70510011) supported by Scientific Research Starting Foundation of Jiaxing University,ChinaProject (84209001B3) supported by Open Fund of Key Laboratory of Clean Chemical Process of Jiaxing,China
文摘The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical techniques including cyclic voltammetry, chronopotentiometry and chronoamperometry. The reduction reaction is found involving a nucleation process on the aluminum electrode. The results of chronopotentiometry indicate that the process of lithium incorporation in aluminum is smooth and uniform. The galvanostatic cycle experiments show that the coulombic efficiency is very low in the first cycle, which is mainly due to the "retention capacity" of Li-Al alloys. This characteristic is testified by the results of XRD and SEM. The results of chronoamperometry indicate that the incorporation of lithium into aluminum for the formation of a-phase Li-Al alloy is limited by its diffusion rate, with a measured diffusion coefficient of 1.8× 10^-10 cm2/s.
文摘Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(Ⅱ) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with the two soluble electrodes (mild steel and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first followed by the filter and finally by the aluminum electrodes, the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.