The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by th...The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.展开更多
The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous cast...The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.展开更多
The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were pro...The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.展开更多
To improve the quality of 7050 aluminum alloy ingots, low-frequency electromagnetic (LFE) field was applied during the conventional hot-top casting process. Macrostructures and microstructures of the ingots by the c...To improve the quality of 7050 aluminum alloy ingots, low-frequency electromagnetic (LFE) field was applied during the conventional hot-top casting process. Macrostructures and microstructures of the ingots by the conventional and LFE hot-top casting processes were studied. The experimental results show that when the LFE field is turn off during the hot-top casting process, cold folding appears, and the as-cast structure becomes very coarse. Additionally, the thickness of the shell zone is much thinner during the low-frequency electromagnetic hot-top casting process than that during the conventional hot-top casting process. Some reasons for low-frequency electromagnetic field improving the surface quality, refining the structure of the ingot, and minimizing the thickness of the shell zone have been studied.展开更多
The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fat...The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fatigue strength as depicted bymaximum stress vs the number of cycles until failure(S-N)curves,by comparison with these original aluminum alloys.Althoughthe fatigue process of the original and budged alloys follows the same mechanism with three distinct steps,namely,crack initiation ata corner of the tested samples,stable crack propagation with typical fatigue striations and finally catastrophic fracture with dimplefractographic features.The typical crack propagation rate vs stress intensity factor range(da/dN-ΔK)curves derived from thespacing of striations reveal a lower crack propagation rate in the bulged specimens.The enhancement of fatigue strength inelectromagnetically bulged aluminum alloy is further rationalized in-depth on the basis of strain hardening and dislocation shieldingeffect.展开更多
Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte me...Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.展开更多
With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investig...With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investigated. Calculating results showed that magnetic flux density in the aluminum melt was greatly improved and the magnetic field interaction among different coils was decreased when external part of mould is made of soft magnetic material. Based on the finding, a four-strand low-frequency electromagnetic casting 6063 aluminum alloy experiment was carried out in the laboratory . The experiment showed that the surface of the billet was smooth and had no exudations and cold shuts, the as-cast microstructures were fine, uniform, equiaxed, net-globular or globular under low-frequency electromagnetic field. The microstructure becomes finer with increased current value.展开更多
The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of...The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.展开更多
We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency...We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.展开更多
The effects of pouring temperature and annulus gap width on the microstructure of the semi-solid A357 aluminum alloy slurry prepared by annulus electromagnetic stirring(AEMS)technology were investigated.The results sh...The effects of pouring temperature and annulus gap width on the microstructure of the semi-solid A357 aluminum alloy slurry prepared by annulus electromagnetic stirring(AEMS)technology were investigated.The results show that low pouring temperature and narrow annulus gap are advantageous to obtaining the small spherical primaryα(Al)phase.The lower the pouring temperature is and the smaller the annulus gap width is,the more uniform,the smaller and the more spherical the microstructure is. The microstructures obtained by the ordinary electromagnetic stirring and AEMS were compared.The results indicate that the primaryα(Al)particles are globular,small and distribute homogeneously in the slurry obtained by AEMS.But in the slurry obtained by the ordinary electromagnetic stirring,the primaryα(Al)particles are small dendrites in the edge of the slurry and they are large and rosette-like or dendritic in the inner of the slurry.展开更多
The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared thro...The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.展开更多
The difference of conductivity between primary iron-rich phases and aluminum melt has been used to separate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steady magne...The difference of conductivity between primary iron-rich phases and aluminum melt has been used to separate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steady magnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separation indicates that primary needle-like β phases are difficult to separate; while primary α iron-rich phases can be separated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully when the molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.展开更多
A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. ...A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. It is experimentally found that with electrical current of 400 A/cm2, it takes only 10 s to remove 95% inclusion from aluminum melt. Comprehensive numerical simulations were carried out to investigate the dynamics mechanisms behind the process. The results show that the removal of inclusion is attributed to the cooperative effects of electromagnetic buoyancy and the secondary flow induced by the rotational electromagnetic force, and the removal efficient increases with the size of inclusion and the electrical current imposed. Theoretical predictions on the distribution and removal efficiency of inclusion were supported by the experiments.展开更多
Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addit...Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.展开更多
Effects of processing variables such as frequency of imposed magnetic field, imposed magnetic flux density, processing time, diameter of inclusions, and value of r 1/δ on the electromagnetic separating(EMS) removal e...Effects of processing variables such as frequency of imposed magnetic field, imposed magnetic flux density, processing time, diameter of inclusions, and value of r 1/δ on the electromagnetic separating(EMS) removal efficiency were analyzed theoretically. The higher the frequency, the wider the range of r 1/δ will be. Removal efficiency reaches the maximum while r 1/δ ranges from 1.5 to 2. And the experimental results on aluminum melt show that higher frequency and magnetic flux density make for higher removal efficiency, matching well with the theoretical results. When f is 15.6 kHz, B e is 0.1 T , and imposed time is 10 s, more than 80% inclusion particles with 6 μm diameter can be removed.展开更多
With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that mag...With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that magnetic flux density and electromagnetic body force in the aluminum melt are greatly increased when the external part of mould is made from A3 steel. A low-frequency electromagnetic casting 6063 aluminum alloy experiment was conducted in the laboratory with the current value of 120 A and frequency value of 15 Hz. The experiment showed that the microstructure and surface quality of ingots with mould outer part made from A3 steel under low-frequency electromagnetic field are better than that of ingots with mould outer part made from austenitic stainless steel. The surface of the ingots with mould outer part made from A3 steel is smooth and free from exudations and cold shut defects. The as-cast microstructure consists of fine, uniformly distributed equiaxed grains.展开更多
The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temp...The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temperature as well as induction heat on casting speed, were studied. The results show that among the technical parameters the distance from the position of the cooling water holes to the bottom of the mold is the most important factor, whose change from 20 mm to 15 mm and from 15 mm to 10 mm causes the setting rate increasing respectively by 0.14 mm/s and 0.3 mm/s.The calculated results also agree with the experiment well. The simulation program can be used to determine technical parameters of electromagnetic casting of aluminum ingot effectively.展开更多
The influences of out-phase electromagnetic field on the as-cast structure of horizontal direct chill casting aluminum alloy ingot were experimental by and numerical by studied. The results of numerical analysis show ...The influences of out-phase electromagnetic field on the as-cast structure of horizontal direct chill casting aluminum alloy ingot were experimental by and numerical by studied. The results of numerical analysis show that the interaction of the out-phase electromagnetic field and the melt can generate an electromagnetically induced forced flow in the melt, which, in turn, changes flow pattern and temperature field in the mold. The as-cast structure of the ingot can be greatly improved by the changes of flow pattern and temperature field. The results of experimental analysis show that with application of out-phase electromagnetic field, temperature distribution in the melt is more uniform, grain morphology changes from columnar grains to equiaxed grains and grain size decreases.展开更多
The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequen...The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.展开更多
In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the m...In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.展开更多
基金Project(2005CB623707)supported by National Basic Research Project of China
文摘The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.
基金This research was supported by Major State Basic Research Projects of China, Grant No.:G1999064905 and the National Natural Science Foundation of China, No.59974009.
文摘The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.
文摘The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.
基金supported by the Major State Basic Research and Development Project of China (No.2005CB623707)the Innovative Research Team Project of Northeastern University (No.N090109001)
文摘To improve the quality of 7050 aluminum alloy ingots, low-frequency electromagnetic (LFE) field was applied during the conventional hot-top casting process. Macrostructures and microstructures of the ingots by the conventional and LFE hot-top casting processes were studied. The experimental results show that when the LFE field is turn off during the hot-top casting process, cold folding appears, and the as-cast structure becomes very coarse. Additionally, the thickness of the shell zone is much thinner during the low-frequency electromagnetic hot-top casting process than that during the conventional hot-top casting process. Some reasons for low-frequency electromagnetic field improving the surface quality, refining the structure of the ingot, and minimizing the thickness of the shell zone have been studied.
基金Project(2011CB012806) supported by the National Basic Research Program of China
文摘The effect of electromagnetic bulging on the fatigue behavior of the5052aluminum alloy was investigated throughtensile-tensile fatigue testing.The intriguing finding is that the bulged specimens exhibited enhanced fatigue strength as depicted bymaximum stress vs the number of cycles until failure(S-N)curves,by comparison with these original aluminum alloys.Althoughthe fatigue process of the original and budged alloys follows the same mechanism with three distinct steps,namely,crack initiation ata corner of the tested samples,stable crack propagation with typical fatigue striations and finally catastrophic fracture with dimplefractographic features.The typical crack propagation rate vs stress intensity factor range(da/dN-ΔK)curves derived from thespacing of striations reveal a lower crack propagation rate in the bulged specimens.The enhancement of fatigue strength inelectromagnetically bulged aluminum alloy is further rationalized in-depth on the basis of strain hardening and dislocation shieldingeffect.
基金Project (G1999064903) supported by the National Key Fundamental Research and Development Programof China
文摘Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.
文摘With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investigated. Calculating results showed that magnetic flux density in the aluminum melt was greatly improved and the magnetic field interaction among different coils was decreased when external part of mould is made of soft magnetic material. Based on the finding, a four-strand low-frequency electromagnetic casting 6063 aluminum alloy experiment was carried out in the laboratory . The experiment showed that the surface of the billet was smooth and had no exudations and cold shuts, the as-cast microstructures were fine, uniform, equiaxed, net-globular or globular under low-frequency electromagnetic field. The microstructure becomes finer with increased current value.
文摘The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.
基金financially supported by the National Natural Science Foundation of China(No.51004036)the Fundamental Research Funds for the Central Universities(No.N120309002)
文摘We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.
基金Projects(2006AA03Z1152009AA03Z534)supported by the Hi-tech Research and Development Program of ChinaProject(2006CB605203)supported by National Basic Research Program of China
文摘The effects of pouring temperature and annulus gap width on the microstructure of the semi-solid A357 aluminum alloy slurry prepared by annulus electromagnetic stirring(AEMS)technology were investigated.The results show that low pouring temperature and narrow annulus gap are advantageous to obtaining the small spherical primaryα(Al)phase.The lower the pouring temperature is and the smaller the annulus gap width is,the more uniform,the smaller and the more spherical the microstructure is. The microstructures obtained by the ordinary electromagnetic stirring and AEMS were compared.The results indicate that the primaryα(Al)particles are globular,small and distribute homogeneously in the slurry obtained by AEMS.But in the slurry obtained by the ordinary electromagnetic stirring,the primaryα(Al)particles are small dendrites in the edge of the slurry and they are large and rosette-like or dendritic in the inner of the slurry.
基金Project(2014CB046702) supported by the National Basic Research Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.
文摘The difference of conductivity between primary iron-rich phases and aluminum melt has been used to separate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steady magnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separation indicates that primary needle-like β phases are difficult to separate; while primary α iron-rich phases can be separated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully when the molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.
基金Project (50174037) supported by the National Natural Science Foundation of China Project (50225416) supported by the National Science Fund for Distinguish Young Scholars
文摘A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. It is experimentally found that with electrical current of 400 A/cm2, it takes only 10 s to remove 95% inclusion from aluminum melt. Comprehensive numerical simulations were carried out to investigate the dynamics mechanisms behind the process. The results show that the removal of inclusion is attributed to the cooperative effects of electromagnetic buoyancy and the secondary flow induced by the rotational electromagnetic force, and the removal efficient increases with the size of inclusion and the electrical current imposed. Theoretical predictions on the distribution and removal efficiency of inclusion were supported by the experiments.
基金financially supported by the National Key Technology R&D Program(2015BAG12B01)the National Natural Science Foundation of China(11672251)the State Key Lab of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2015-10)
文摘Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring(EMS) and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.
文摘Effects of processing variables such as frequency of imposed magnetic field, imposed magnetic flux density, processing time, diameter of inclusions, and value of r 1/δ on the electromagnetic separating(EMS) removal efficiency were analyzed theoretically. The higher the frequency, the wider the range of r 1/δ will be. Removal efficiency reaches the maximum while r 1/δ ranges from 1.5 to 2. And the experimental results on aluminum melt show that higher frequency and magnetic flux density make for higher removal efficiency, matching well with the theoretical results. When f is 15.6 kHz, B e is 0.1 T , and imposed time is 10 s, more than 80% inclusion particles with 6 μm diameter can be removed.
基金The project (G199906490501) was supported by the National Key Fundamental Research and Development Program of China
文摘With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that magnetic flux density and electromagnetic body force in the aluminum melt are greatly increased when the external part of mould is made from A3 steel. A low-frequency electromagnetic casting 6063 aluminum alloy experiment was conducted in the laboratory with the current value of 120 A and frequency value of 15 Hz. The experiment showed that the microstructure and surface quality of ingots with mould outer part made from A3 steel under low-frequency electromagnetic field are better than that of ingots with mould outer part made from austenitic stainless steel. The surface of the ingots with mould outer part made from A3 steel is smooth and free from exudations and cold shut defects. The as-cast microstructure consists of fine, uniformly distributed equiaxed grains.
文摘The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temperature as well as induction heat on casting speed, were studied. The results show that among the technical parameters the distance from the position of the cooling water holes to the bottom of the mold is the most important factor, whose change from 20 mm to 15 mm and from 15 mm to 10 mm causes the setting rate increasing respectively by 0.14 mm/s and 0.3 mm/s.The calculated results also agree with the experiment well. The simulation program can be used to determine technical parameters of electromagnetic casting of aluminum ingot effectively.
基金Supported by Postdoctor Fund of Northeastern University
文摘The influences of out-phase electromagnetic field on the as-cast structure of horizontal direct chill casting aluminum alloy ingot were experimental by and numerical by studied. The results of numerical analysis show that the interaction of the out-phase electromagnetic field and the melt can generate an electromagnetically induced forced flow in the melt, which, in turn, changes flow pattern and temperature field in the mold. The as-cast structure of the ingot can be greatly improved by the changes of flow pattern and temperature field. The results of experimental analysis show that with application of out-phase electromagnetic field, temperature distribution in the melt is more uniform, grain morphology changes from columnar grains to equiaxed grains and grain size decreases.
基金This research was supported by the Major State Basic Research Project of China,Grant No.G1999064905the National Natural Science Foundation of China,No.59974009.
文摘The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.
文摘In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.