Effects of face-sheet thickness and core thickness of sandwich panels, and shape of projectiles on the penetration resistance of sandwich panels were discussed, while typical pen- etration failure modes were presented...Effects of face-sheet thickness and core thickness of sandwich panels, and shape of projectiles on the penetration resistance of sandwich panels were discussed, while typical pen- etration failure modes were presented. It was shown that the anti-penetration performance of sandwich panels was enhanced with the increase of face-sheet or core thickness; The penetration resistance of sandwich panels was shown to be strongest to blunt-shaped projectile impacts, weaker to hemispherical-nose-shaped projectile impacts, and weakest to conical-shaped projectile impacts. The corresponding numerical simulation was carried out using the finite element code LS-DYNA V970. Numerical results showed that the penetration time decreased with the increase of projectile impact velocity.展开更多
鉴于泡沫铝材料优异的吸能特性和三明治型组合构件在强度、刚度上的优势,针对分层结构为钢板-泡沫铝芯层-钢板的100 mm厚抗爆组合板进行了装药量为1.0 kg TNT的接触爆炸试验,考察了组合板在接触爆炸条件下的变形及破坏情况,并对组合板...鉴于泡沫铝材料优异的吸能特性和三明治型组合构件在强度、刚度上的优势,针对分层结构为钢板-泡沫铝芯层-钢板的100 mm厚抗爆组合板进行了装药量为1.0 kg TNT的接触爆炸试验,考察了组合板在接触爆炸条件下的变形及破坏情况,并对组合板的变形破坏过程进行了理论分析和数值模拟。研究表明,组合板承受接触爆炸荷载时,主要通过局部压缩变形和整体弯曲变形吸收耗散能量,上下面板与芯层间易发生剥离现象。钢板相同时适当增大泡沫铝芯层厚度,泡沫铝芯层相同时增加钢板厚度,均可减小组合板承受接触爆炸冲击荷载时产生的变形破坏,提高其抗爆性能。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11172196,11572214 and 11402216)the Top Young Academic Leaders of Higher Learning Institutions of Shanxi and the opening foundation for State Key Laboratory of Explosion Science and Technology and the State Key Laboratory of Traction Power(No.2014TPL T09)
文摘Effects of face-sheet thickness and core thickness of sandwich panels, and shape of projectiles on the penetration resistance of sandwich panels were discussed, while typical pen- etration failure modes were presented. It was shown that the anti-penetration performance of sandwich panels was enhanced with the increase of face-sheet or core thickness; The penetration resistance of sandwich panels was shown to be strongest to blunt-shaped projectile impacts, weaker to hemispherical-nose-shaped projectile impacts, and weakest to conical-shaped projectile impacts. The corresponding numerical simulation was carried out using the finite element code LS-DYNA V970. Numerical results showed that the penetration time decreased with the increase of projectile impact velocity.
文摘鉴于泡沫铝材料优异的吸能特性和三明治型组合构件在强度、刚度上的优势,针对分层结构为钢板-泡沫铝芯层-钢板的100 mm厚抗爆组合板进行了装药量为1.0 kg TNT的接触爆炸试验,考察了组合板在接触爆炸条件下的变形及破坏情况,并对组合板的变形破坏过程进行了理论分析和数值模拟。研究表明,组合板承受接触爆炸荷载时,主要通过局部压缩变形和整体弯曲变形吸收耗散能量,上下面板与芯层间易发生剥离现象。钢板相同时适当增大泡沫铝芯层厚度,泡沫铝芯层相同时增加钢板厚度,均可减小组合板承受接触爆炸冲击荷载时产生的变形破坏,提高其抗爆性能。