期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of Metallographic Characteristics of Aluminum Alloy for Turbocharged Impellers
1
作者 Kaixuan Lang Xiangli Zhai +3 位作者 Wanjun Sun Ning Liu Bing Sun Zhonggang Tang 《Journal of Materials Science and Chemical Engineering》 2023年第12期46-53,共8页
In this paper, the composition, two-dimensional and three-dimensional microstructure of heat-resistant wrought aluminum alloy with strong oxidation resistance, heat resistance and easy processing are analyzed by using... In this paper, the composition, two-dimensional and three-dimensional microstructure of heat-resistant wrought aluminum alloy with strong oxidation resistance, heat resistance and easy processing are analyzed by using direct reading spectrometer, metallographic microscope and scanning electron microscope. The main alloy elements of heat-resistant forging aluminum alloy include Cu, Mg, Si, Ni and Fe. The α solid solution of each element in aluminum consists of S phase (Al<sub>2</sub>CuMg), Mg<sub>2</sub>Si phase, bright gray Al<sub>2</sub>CuNi phase and dark brown Al<sub>9</sub>FeNi phase. The distribution of each phase in the aluminum alloy is determined by the three-dimensional energy spectrum analysis of the microstructure, and the distribution of each phase in the crystal position is analyzed. The mechanism of heat resistance, easy processing type and wear resistance is obtained, which provides the theoretical basis for the development and use of heat-resistant forged aluminum alloy. 展开更多
关键词 High Heat Resistant aluminum Alloy METALLOGRAPHY Electron Microscope Analysis
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Si Cp/2024 Aluminum Matrix Composite 被引量:2
2
作者 柳培 王爱琴 +1 位作者 XIE Jingpei HAO Shiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1229-1233,共5页
SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tens... SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tensile and hardness tests. The experimental results showed that SiC particles distributed uniformly in the matrix and were in good combination with matrix. The tensile strength and hardness were improved significantly after heat treatment. With the increase of solid solution temperature, the alloy phases dissolved in the matrix gradually. When the solid solution temperature arrived at 505 ℃, the alloy phases dissolved thoroughly, and the composite exhibited the highest tensile strength and hardness(σb=360 MPa, HBS=104). The main strengthening phase was Al2Cu, which was granular and distributed dispersively in the matrix. Effect of T6 was better than that of T4 at the same solid solution temperature. 展开更多
关键词 SiCp/2024 aluminum matrix heat treatment microstructure mechanical properties
下载PDF
Development of inclusions in 3104 alloy melt during heating and holding treatments
3
作者 Xiao-xiong Luo Hai-tao Zhang +4 位作者 Xing Han Shi-jie Guo Dan-dan Chen Jian-zhong Cui Hiromi Nagaumi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期637-644,共8页
Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the conte... Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoD FA methods are MgO, Al2O3, spinel(MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm^2×kg^-1 to 7.54 mm^2×kg^-1 and then decreases to 3.08 mm^2×kg^-1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flotation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production. 展开更多
关键词 aluminum alloys inclusions heating holding time settling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部