The flow stress feature of aluminum sheet used for pressure can during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble 1 500 dynamic materials testing machine. The ...The flow stress feature of aluminum sheet used for pressure can during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble 1 500 dynamic materials testing machine. The experimental results show that the steady state deformation is remarkable when the material is deformed in the temperature range of 350~500 ℃ at strain rates within the range of 10 -2 ~10.0 s -1 . The material is sensitive to positive strain rate. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature. Semi empirical constitutive equations of the flow stress are derived from all experimental data for tested material during plastic deformation at elevated temperature by polyelement linear regression analysis. [展开更多
An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted in a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. This...An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted in a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. This failure prediction methodology is developed based on the Marciniak-Kuczynski approach by assuming a slightly higher void volume fraction inside randomly oriented imperfecte analysis. Here, a nonproportional deformation history including relative rotation of principal stretch directions is identified in a selected critical element of an aluminum sheet from a FEM fender forming simulation. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that thiven non-proportional deformation history.展开更多
基金Project (E981 0 0 0 3)supportedbytheNaturalScienceFoundationofFujianProvince P .R .China
文摘The flow stress feature of aluminum sheet used for pressure can during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble 1 500 dynamic materials testing machine. The experimental results show that the steady state deformation is remarkable when the material is deformed in the temperature range of 350~500 ℃ at strain rates within the range of 10 -2 ~10.0 s -1 . The material is sensitive to positive strain rate. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature. Semi empirical constitutive equations of the flow stress are derived from all experimental data for tested material during plastic deformation at elevated temperature by polyelement linear regression analysis. [
文摘An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted in a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. This failure prediction methodology is developed based on the Marciniak-Kuczynski approach by assuming a slightly higher void volume fraction inside randomly oriented imperfecte analysis. Here, a nonproportional deformation history including relative rotation of principal stretch directions is identified in a selected critical element of an aluminum sheet from a FEM fender forming simulation. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that thiven non-proportional deformation history.