Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet ...Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of ~0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in Al N presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61575129 and 11447029)the Science&Technology Innovation Committee Foundation of Shenzhen(No.JCYJ20160328144942069)
文摘Supercontinuum generation(SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride(AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of ~0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in Al N presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.