期刊文献+
共找到3,841篇文章
< 1 2 193 >
每页显示 20 50 100
Towards a new avenue for rapid synthesis of electrocatalytic electrodes via laser-induced hydrothermal reaction for water splitting
1
作者 Yang Sha Menghui Zhu +6 位作者 Kun Huang Yang Zhang Francis Moissinac Zhizhou Zhang Dongxu Cheng Paul Mativenga Zhu Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期340-351,共12页
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ... Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production. 展开更多
关键词 electrocatalytic electrode laser-induced hydrothermal reaction NiFe layered double hydroxides hydrogen evolution reaction water splitting energy consumption production rate
下载PDF
Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy
2
作者 Xueqiu You Dongao Zhang +4 位作者 Xia‑Guang Zhang Xiangyu Li Jing‑Hua Tian Yao‑Hui Wang Jian‑Feng Li 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期303-312,共10页
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U... Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure. 展开更多
关键词 In situ Raman Interfacial water Hydrogen evolution reaction CATIONS
下载PDF
Recent advances and key perspectives of in-situ studies for oxygen evolution reaction in water electrolysis
3
作者 Yi Wang Zichen Xu +1 位作者 Xianhong Wu Zhong-Shuai Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1497-1517,共21页
Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key hal... Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed. 展开更多
关键词 In-situ studies water splitting Oxygen evolution reaction Catalytic mechanism
下载PDF
Theoretical Study on Reaction Mechanism of Aluminum-Water System 被引量:1
4
作者 Yun-lan Sun Yan Tian Shu-fen Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第3期245-249,共5页
A theoretical study on the reaction of aluminum with water in the gas phase was performed using the hybrid density functional B3LYP and QCISD(T) methods with the 6-311+G(d,p) and the 6-311++G(d,p) basis sets.... A theoretical study on the reaction of aluminum with water in the gas phase was performed using the hybrid density functional B3LYP and QCISD(T) methods with the 6-311+G(d,p) and the 6-311++G(d,p) basis sets. The results show that there are three possible reaction pathways that involve four isomers, seven transition structures, and two possible products for the reaction of aluminum with water. The two most favorable reaction pathways were found, whose intermediates and products agreed quite well with experimental results. The enthalpy and Gibbs free energy change of the reaction between A1 and H2O at 298 and 2000 K were calculated. Some results are also in good agreement with the previous calculations or experimental results. 展开更多
关键词 aluminum water reaction mechanism Hybrid density functional theory
下载PDF
Effect of water content on corrosion inhibition behavior of self-assembled TDPA on aluminum alloy surface 被引量:1
5
作者 屈钧娥 陈庚 +1 位作者 王海人 聂德键 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3137-3144,共8页
Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water co... Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water content. The adsorption and corrosion protection properties of the SAMs for 2024 alloy in 0.1 mol/L H2SO4 solution were examined and characterized by potentiodynamic polarization, electrochemical impedance spectrum (EIS), Fourier transformed infrared spectroscopy (FTIR), Auger electron spectra (AES) and atomic force microscopy (AFM). FTIR and AES results show that the TDPA molecules were successfully adsorbed on the 2024 aluminum alloy surface, and the density of the SAMs increased with the increasing water content in the assembly solution. The results of electrochemical studies and corrosion morphologies observed by AFM show that a 4 h modification resulted in maximal inhibition efficiency, and the higher the water content in the assembly solution is, the better the inhibition performance of the SAMs can be achieved. The effect of water content in TDPA solutions on the performance of the SAMs is related to the hydration reaction of the metal surface. 展开更多
关键词 1-tetradecylphosphonic acid self-assembled monolayer aluminum alloys corrosion inhibition water content
下载PDF
Reverse water gas shift reaction over Co-precipitated Ni-CeO_2 catalysts 被引量:14
6
作者 王路辉 张少星 刘源 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期66-70,共5页
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activ... The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2. 展开更多
关键词 reverse water gas shift reaction NICKEL CEO2 oxygen vacancy
下载PDF
Effects of fulvic acid and humic acid on aluminum speciation in drinking water 被引量:6
7
作者 Wendong Wang Hongwei Yang +2 位作者 Xiaochang Wang Jing Jiang Wanpeng Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第2期211-217,共7页
This article focused on the influences of fulvic acid and humic acid on aluminum speciation in drinking water. Factors including the concentration of residual chlorine and pH value had been concerned. Aluminum species... This article focused on the influences of fulvic acid and humic acid on aluminum speciation in drinking water. Factors including the concentration of residual chlorine and pH value had been concerned. Aluminum species investigated in the experiments included inorganic mononuclear, organic mononuclear, mononuclear, polymer, soluble, and suspended forms. It was found that the effects of fulvic acid and humic acid on aluminum speciation depended mainly on their molecular weight. Fulvic acid with molecular weight less than 5000 Dalton had little influence on aluminum speciation; while fulvic acid with molecular weight larger than 5000 Dalton and humic acid would increase the concentration of soluble aluminum significantly even at concentration below 0.5 mg/L (calculated as TOC). Aluminum species, in the present of fulvic acid with molecular weight larger than 5000 Dalton and humic acid, were more stable than that in the present of fluvic acid with molecular mass less than 5000 Dalton, and varied little with reaction time. Within pH range 6.5-7.5, soluble aluminum increased notably in water with organic matter. As the concentration of residual chlorine increased, the effects of fulvic acid and humic acid became weak. The reactions between humic acid, fulvic acid with large molecular weight, and aluminum were considered to be a multi-dentate coordination process. With the consideration of aluminum bioavailability, reducing the concentration of fulvic acid and humic acid and keeping the pH value among 6.5-7.5 were recommended during drinking water treatment. 展开更多
关键词 aluminum species drinking water fluorometric method fulvic acid humic acid
下载PDF
Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al_2O_3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy 被引量:5
8
作者 黄开金 LIN Xin +1 位作者 XIE Changsheng T M Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期89-94,共6页
Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding (one-step method) and laser cladding followed by laser re-melting (two-... Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding (one-step method) and laser cladding followed by laser re-melting (two-step method) using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy, respectively. The microstructure of the coatings was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. Owing to the presence of hard α-Al2O3 and γ-Al2O3 phases, the coatings exhibited excellent wear resistance. In addition, the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method. 展开更多
关键词 laser cladding thermite reaction aluminum alloy WEAR
下载PDF
Experimental Study on Reaction Thrust Characteristics of Water Jet for Conical Nozzle 被引量:6
9
作者 黄国勤 李晓辉 +1 位作者 朱玉泉 聂松林 《China Ocean Engineering》 SCIE EI 2009年第4期669-678,共10页
Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thr... Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thrust characteristics of water jet for conical nozzles directly determine the speed of autonomous underwater vehicles (AUV). Theoretical, numerical and experimental studies have been, carried out to investigate the effects of the nozzle geometries as well as inlet conditions on the reaction thrust of water jet in this paper. The experimental results show that: 1) the reaction thrust is proportional to inlet pressure, the square of flow rate and 2/3 power exponent of input power; 2) the diameter of cylinder column for conical nozzle has great influence on the reaction thrust characteristics; 3) the best values of the half cone angle and the cylinder column length exist to make the reaction thrust coefficient to reach the maximum under the same inlet conditions. Those provide a basis for nozzles design and have significant value, especially for developing high performance and efficiency water jet propulsion unit. 展开更多
关键词 conical nozzle reaction thrust thrust coefficient water jet
下载PDF
RESEARCH ON THE WATER-RESISTANCE OF MAGNESIUM OXYCHLORIDE CEMENT——I:THE STABILITY OF THE REACTION PRODUCTS OF MAGNESIUM OXYCHLORIDE CEMENT IN WATER 被引量:9
10
作者 张传镁 邓德华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第3期51-59,共9页
In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable... In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well. 展开更多
关键词 magnesitt籭. oxychloride cement stability of the reaction products water resistance hydrolysis.
下载PDF
Factors effecting aluminum speciation in drinking waterby laboratory research 被引量:4
11
作者 WendongWang Hongwei Yang +2 位作者 Xiaochang Wang Jing Jiang Wanpeng Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第1期47-55,共9页
Effects of aluminum on water distribution system and human health mainly attribute to its speciation in drinking water. Laboratory experiments were performed to investigate factors that may influence aluminum speciati... Effects of aluminum on water distribution system and human health mainly attribute to its speciation in drinking water. Laboratory experiments were performed to investigate factors that may influence aluminum speciation in water supply system. The concentration of soluble aluminum and its transformation among other aluminum species were mainly controlled by kinetics processes of related reactions. Total aluminum concentration had a notable effect on the concentrations of mononuclear and soluble aluminum in the first 4 day; then its effect became weak. At pH above 7.50, both fluoride and orthophosphate had little effect on aluminum speciation; while, when the solution pH was below 7.50, the concentrations of mononuclear and soluble aluminum were proportional to the concentration of fluoride and inversely proportional to the concentration of orthophosphate. Both mononuclear and polynuclear silicic acids could complex with mononuclear aluminum by forming soluble aluminosilicates. In addition, the adding sequence of orthophosphate and aluminum into drinking water would also affect the distribution of aluminum species in the first 4 day. In order to minimize aluminum bioavailability in drinking water, it was suggested that orthophosphate should be added prior to coagulant process, and that the concentrations of fluoride and silicic acids should be controlled below 2.0 and 25 mg/L, respectively, prior to the treatment. The solution pH in coagulation and filtration processes should be controlled in the range of 6.50-7.50. 展开更多
关键词 aluminum speciation drinking water fluorometric method ORTHOPHOSPHATE silicic acid
下载PDF
Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems 被引量:4
12
作者 Xiaoping Chen Zhixiang Zhang +3 位作者 Lina Chi Aathira Krishnadas Nair Wenfeng Shangguan Zheng Jiang 《Nano-Micro Letters》 SCIE EI CAS 2016年第1期1-12,共12页
Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for imp... Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed. 展开更多
关键词 PHOTOELECTROCHEMICAL water SPLITTING NANOSTRUCTURES reaction system Heterojuction Hybrid systems
下载PDF
Kinetics and mechanism of titanium hydride powder and aluminum melt reaction 被引量:3
13
作者 Ali Rasooli Mehdi Divandari +1 位作者 Hamid Reza Shahverdi Mohammad Ali Boutorabi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第2期165-172,共8页
Based on the measurement of the released hydrogen gas pressure (PH2), the reaction kinetics between TiH2 powder and pure aluminum melt was studied at various temperatures. After cooling the samples, the interface of... Based on the measurement of the released hydrogen gas pressure (PH2), the reaction kinetics between TiH2 powder and pure aluminum melt was studied at various temperatures. After cooling the samples, the interface of TiH2 powder and aluminum melt was studied. The results show that the-time curves have three regions; in the first and second regions, the rate of reaction conforms zero and one order, respectively; in the third region, the hydrogen gas pressure remains constant and the rate of reaction reaches zero. The main factors that control the rate of reaction in the first and second regions are the penetration of hydrogen atoms in the titanium lattice and the chemical reaction between molten aluminum and titanium, respectively. According to the main factors that control the rate of reaction, three temperature ranges are considered for the reaction mechanism: (a) 700-750°C, (b) 750-800°C, and (c) 800-1000°C. In the first temperature range, the reaction is mostly under the control of chemical reaction; at the temperature range of 750 to 800°C, the reaction is controlled by the diffusion and chemical reaction; at the third temperature range (800-1000°C), the dominant controlling mechanism is diffusion. 展开更多
关键词 titanium hydride aluminum reaction kinetics reaction rate constants
下载PDF
Spatial variations of aluminum species in drinking water supplies in Xi'an studied applying geographic information system 被引量:3
14
作者 Wendong Wang,Hua Li,Xiaochang Wang,Yongjun Liu School of Environmental and Municipal Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期519-525,共7页
This article aimed to investigate the variation of aluminum species and the effects of coagulant type and water quality on aluminum speciation in drinking water. Statistical analysis showed that the concentration of t... This article aimed to investigate the variation of aluminum species and the effects of coagulant type and water quality on aluminum speciation in drinking water. Statistical analysis showed that the concentration of total aluminum (AlT) of drinking water in Xi' an ranged from 0.051 to 0.417 mg/L and the concentration of A1T in about 24.7% studied samples was higher than the currently recommended value (0.2 mg/L). The areas fed by surface water plants had a larger portion (39.4%) of samples over the recommended value. In drinking water treated by alum coagulant, the average concentration of monomeric aluminum (Ala) was higher than that in water treated by poly aluminum chlorine (PACl) and poly aluminum ferric chloride (PAFC). The average concentrations of polynuclear aluminum (Alb) and colloidal/suspended aluminum (Ale) in the drinking water treated by alum were lower than those in water treated by PACl and PAFC. There was a notable decrease in AlT along with the delivery pipeline away from the plants, with an average decline of about 36 μg/(L-km). Besides coagulant type, water quality also could affect aluminum speciation. In drinking water without orthophosphate, the concentrations of Ala and AlT were positively correlated with pH; while, in drinking water with orthophospbate, the concentrations of Ala and AlT were negatively correlated with pH. The addition of orthophosphate salts in the drinking water treatment process would be an effective method for aluminum control in pH range 6.5-8.2. 展开更多
关键词 aluminum species geographic information system ORTHOPHOSPHATE water quality
下载PDF
Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments 被引量:3
15
作者 Yan-jun Li Hai-liang Yu +3 位作者 Hai-yun Jin Zhong-qi Shi Guan-jun Qiao Zhi-hao Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期530-536,共7页
An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical ... An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investi- gated. Some properties of the composite, including its bending strength at 700℃ and after oxidization at 700℃ for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion re- sistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiA1ON composite exhibits strong potential for application to molten aluminum environments. 展开更多
关键词 composite materials SiAION ceramics iron molybdenum alloys reaction bonding mechanical properties molten aluminum
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:14
16
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide REVERSE water gas SHIFT reaction METHANATION SUPPORTED metal CATALYST Mechanism
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:15
17
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Roles of heteroatoms in electrocatalysts for alkaline water splitting:A review focusing on the reaction mechanism 被引量:4
18
作者 Chuqiang Huang Jianqing Zhou +5 位作者 Dingshuo Duan Qiancheng Zhou Jieming Wang Bowen Peng Luo Yu Ying Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2091-2110,共20页
Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Hetero... Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Heteroatom modification is one of the most effective strategies for boosting catalytic performance,as it can regulate the physicochemical properties of host catalysts to improve their intrinsic activity.Herein,aiming to provide an overview of the impact of heteroatoms on catalytic activity at the atomic level,we present a review of the key role of heteroatoms in enhancing reaction kinetics based on the reaction pathways of the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline media.In particular,the introduction of heteroatoms can directly and indirectly optimize the interactions between the active sites and intermediates,thus improving the intrinsic activity.To clearly illustrate this influence in detail,we have summarized a series of representative heteroatom-modified electrocatalysts and discussed the important roles of heteroatoms in the OER and HER reaction pathways.Finally,some challenges and perspectives for heteroatom-modified electrodes are discussed.We hope that this review will be helpful for the development of efficient and low-cost electrocatalysts for water electrolysis and other energy conversion applications. 展开更多
关键词 Alkaline water splitting Heteroatom modification reaction pathway Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Effect of Si content on interfacial reaction and properties between solid steel and liquid aluminum 被引量:5
19
作者 Tian-peng ZOU Gao-yang YU +5 位作者 Shu-hai CHEN Ji-hua HUANG Jian YANG Zhi-yi ZHAO Ji-ping RONG Jin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2570-2584,共15页
The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a... The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a thermophysical simulation method.The influence of Si addition on interfacial mechanical properties was revealed by a high-frequency induction brazing.The results showed that IMCs layers mainly consisted ofη-Fe_(2)Al_(5)andθ-Fe_(4)Al_(13).The addition of Si reduced the thickness of the IMCs layer.The growth of theηphase was governed by the diffusion process when adding 2 wt.%Si to the aluminum melt.When 5 wt.%or 8 wt.%Si was added to aluminum,the growth was governed by both the diffusion process and interfacial reaction,and ternary phaseτ1/τ9-(Al,Si)_(5)Fe_(3)was formed in theηphase.The apparent activation energies of theηphase decreased gradually with increasing Si content.The joint with pure aluminum metal had the highest tensile strength and impact energy. 展开更多
关键词 intermetallic compounds Si content solid steel liquid aluminum interfacial reaction mechanical properties
下载PDF
Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship 被引量:6
20
作者 Seong-Jong KIM Seok-Ki JANG +3 位作者 Min-Su HAN Jae-Cheul PARK Jae-Yong JEONG Sang-Ok CHONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期636-641,共6页
The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed ... The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment. 展开更多
关键词 aluminum alloy CORROSION electrochemical characteristics stress corrosion cracking hydrogen embrittlement sea water corrosion cathodic protection
下载PDF
上一页 1 2 193 下一页 到第
使用帮助 返回顶部