Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with...Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.展开更多
The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of act...The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.展开更多
A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of...A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.展开更多
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigat...Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.展开更多
Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity f...Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.展开更多
Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater trea...Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater treatment system was established to provide an useful basis for further simulate scale up treatment of toxic organic wastewater.展开更多
Hydrothermal carbonization(HTC)technologies for producing value-added carbonaceous material(hydrochar)from coal waste and sewage sludge(SS)waste might be a long-term recycling strategy for hydrogen storage application...Hydrothermal carbonization(HTC)technologies for producing value-added carbonaceous material(hydrochar)from coal waste and sewage sludge(SS)waste might be a long-term recycling strategy for hydrogen storage applications,cutting disposal costs and solving waste disposal difficulties.In this study,hydrochars(HC)with high carbon content were produced using a combination of optimal HTC(HTC and Co-HTC)and chemical activation of coal tailings(CT),coal slurry(CS),and a mixture of coal discard and sewage sludge(CB).At 850℃and 800℃,respectively,with a KOH/HC ratio of 4:1 and a residence time of 135 min,activated carbons(ACs)with the highest Brunauer–Emmett–Teller specific surface(S_(BET))of 2299.25 m^(2)g^(−1)and 2243.57 m^(2)g^(−1)were obtained.The hydrogen adsorption capability of the produced ACs was further studied using gas adsorption isotherms at 77 K.At 35 bars,the values of hydrogen adsorbed onto AC-HCT(AC obtained from HTC of CT),AC-HCS(AC obtained from HTC of CS),and AC-HCB(AC obtained from HTC of the blending of coal discard(CD)and SS)were approximately 6.12%,6.8%,and 6.57%in weight,respectively.Furthermore,the cost of producing synthetic ACs for hydrogen storage is equivalent to the cost of commercial carbons.Furthermore,the high proportion of carbon retained(>70%)in ACs synthesized by HTC from CD and SS precursors should restrict their potential carbon emissions.展开更多
The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pol...The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance.展开更多
To improve the sludge conditioning efficiency without increasing the ozone dose,an in-situ sludge reduction process based on Mn^(2+)-catalytic ozonation conditioning was proposed.Using ozone conditioning alone as a co...To improve the sludge conditioning efficiency without increasing the ozone dose,an in-situ sludge reduction process based on Mn^(2+)-catalytic ozonation conditioning was proposed.Using ozone conditioning alone as a control,a lab-scale sequencing batch reactor coupled with ozonated sludge recycle was evaluated for its operating performance at an ozone dose of 75 mg O_(3)/g VSS and 1.5 mmol/L Mn^(2+)addition.The results showed a 39.4%reduction in MLSS and an observed sludge yield of 0.236 kg MLSS/kg COD for the O_(3)+Mn^(2+)group compared to the O_(3)group (15.3%and 0.292 kg MLSS/kg COD),accompanied by better COD,NH_(4)^(+)-N,TN and TP removal,improved effluent SS and limited impact on excess sludge properties.Subsequently,activity tests,BIOLOG ECO microplates and 16S rRNA sequencing were applied to elucidate the changing mechanisms of Mn^(2+)-catalytic ozonation related to microbial action:(1) Dehydrogenase activity reached a higher peak.(2) Microbial utilization of total carbon sources had an elevated effect,up to approximately 18%,and metabolic levels of six carbon sources were also increased,especially for sugars and amino acids most pronounced.(3) The abundance of Defluviicoccus under the phylum Proteobacteria was enhanced to 12.0%and dominated in the sludge,they had strong hydrolytic activity and metabolic capacity.Denitrifying bacteria of the genus Ferruginibacter also showed an abundance of 7.6%,they contributed to the solubilization and reduction of sludge biomass.These results could guide researchers to further reduce ozonation conditioning costs,improve sludge management and provide theoretical support.展开更多
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z326)the Programfor New Century Excellent Talents(06-0373)in University
文摘Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.
文摘The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.
基金Supported by the Major Science and Technology Program for Water Pollution Contro and Treatment-Crucial Technology Research and Engineering Sample Subject on Municipa Wastewater Treatment Process Updated to Higher Drainage Standard(2008ZX07317-02)Wuhan Water Pollution Control and the Water Environment Administer Technology and Synthetic Sample Project in Cities and Towns(2008ZX07317)
文摘A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.
基金the Ministry of Higher Education,Malaysia(MOHE)for the financial supports received under University Grant(08H05)and Fundamental Research Grant Scheme(4F872)Universiti Teknologi Malaysia for the GUP grant No.17H65the support to the main author,Wong Syie Luing,in the form of Post-Doctoral Fellowship Scheme for the project"Catalytic Cracking of Low Density Polyethylene Waste to Liquid Fuels in Fixed Bed Reactor"
文摘Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.
基金Project supported by the Open Fund of State Key Laboratory of Photocatalysis,China
文摘Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.
文摘Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater treatment system was established to provide an useful basis for further simulate scale up treatment of toxic organic wastewater.
文摘Hydrothermal carbonization(HTC)technologies for producing value-added carbonaceous material(hydrochar)from coal waste and sewage sludge(SS)waste might be a long-term recycling strategy for hydrogen storage applications,cutting disposal costs and solving waste disposal difficulties.In this study,hydrochars(HC)with high carbon content were produced using a combination of optimal HTC(HTC and Co-HTC)and chemical activation of coal tailings(CT),coal slurry(CS),and a mixture of coal discard and sewage sludge(CB).At 850℃and 800℃,respectively,with a KOH/HC ratio of 4:1 and a residence time of 135 min,activated carbons(ACs)with the highest Brunauer–Emmett–Teller specific surface(S_(BET))of 2299.25 m^(2)g^(−1)and 2243.57 m^(2)g^(−1)were obtained.The hydrogen adsorption capability of the produced ACs was further studied using gas adsorption isotherms at 77 K.At 35 bars,the values of hydrogen adsorbed onto AC-HCT(AC obtained from HTC of CT),AC-HCS(AC obtained from HTC of CS),and AC-HCB(AC obtained from HTC of the blending of coal discard(CD)and SS)were approximately 6.12%,6.8%,and 6.57%in weight,respectively.Furthermore,the cost of producing synthetic ACs for hydrogen storage is equivalent to the cost of commercial carbons.Furthermore,the high proportion of carbon retained(>70%)in ACs synthesized by HTC from CD and SS precursors should restrict their potential carbon emissions.
基金supported by the National Natural Science Foundation of China (Nos.51778522,and 51508450)the Program for Innovative Research Team in Shaanxi (No.IRT2013KCT-13)
文摘The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance.
基金supported by the National Natural Science Foundation of China (Nos. 52192684 and 52270136)the National Key Research and Development Project (No. 2020YFC1908704)China Three Gorges Corporation (No. 202003166)。
文摘To improve the sludge conditioning efficiency without increasing the ozone dose,an in-situ sludge reduction process based on Mn^(2+)-catalytic ozonation conditioning was proposed.Using ozone conditioning alone as a control,a lab-scale sequencing batch reactor coupled with ozonated sludge recycle was evaluated for its operating performance at an ozone dose of 75 mg O_(3)/g VSS and 1.5 mmol/L Mn^(2+)addition.The results showed a 39.4%reduction in MLSS and an observed sludge yield of 0.236 kg MLSS/kg COD for the O_(3)+Mn^(2+)group compared to the O_(3)group (15.3%and 0.292 kg MLSS/kg COD),accompanied by better COD,NH_(4)^(+)-N,TN and TP removal,improved effluent SS and limited impact on excess sludge properties.Subsequently,activity tests,BIOLOG ECO microplates and 16S rRNA sequencing were applied to elucidate the changing mechanisms of Mn^(2+)-catalytic ozonation related to microbial action:(1) Dehydrogenase activity reached a higher peak.(2) Microbial utilization of total carbon sources had an elevated effect,up to approximately 18%,and metabolic levels of six carbon sources were also increased,especially for sugars and amino acids most pronounced.(3) The abundance of Defluviicoccus under the phylum Proteobacteria was enhanced to 12.0%and dominated in the sludge,they had strong hydrolytic activity and metabolic capacity.Denitrifying bacteria of the genus Ferruginibacter also showed an abundance of 7.6%,they contributed to the solubilization and reduction of sludge biomass.These results could guide researchers to further reduce ozonation conditioning costs,improve sludge management and provide theoretical support.