期刊文献+
共找到17,397篇文章
< 1 2 250 >
每页显示 20 50 100
Humanin蛋白在Alzheimer’s病模型中神经保护作用的研究进展
1
作者 李蓉 樊帅帅 +2 位作者 黄义方 王晓晖 王丽 《临床神经病学杂志》 CAS 2024年第4期297-300,共4页
研究表明,Humanin蛋白通过多种方式在抗Alzheimer’s病的过程中发挥神经保护作用。本综述从Humanin的发现、结构特征、神经保护的机制及其新型同源分泌肽Rattin的结构与功能方面介绍Humanin蛋白在Alzheimer’s病中神经保护作用的最新研... 研究表明,Humanin蛋白通过多种方式在抗Alzheimer’s病的过程中发挥神经保护作用。本综述从Humanin的发现、结构特征、神经保护的机制及其新型同源分泌肽Rattin的结构与功能方面介绍Humanin蛋白在Alzheimer’s病中神经保护作用的最新研究进展。 展开更多
关键词 alzheimer’s病 Β-淀粉样蛋白 HUMANIN Rattin
下载PDF
肠道菌群与Alzheimer’s病的研究进展
2
作者 邱昌盛 吴婷 《临床神经病学杂志》 CAS 2024年第4期304-307,共4页
Alzheimer’s病(AD)是好发于老年人的CNS退行性疾病,以认知能力下降及记忆受损为特征,同时伴发精神症状,严重影响患者的日常生活。肠道菌群是居住在胃肠道中的所有微生物的集合,是人体不可分割的一部分。肠道菌群可以通过脑-肠轴影响CNS... Alzheimer’s病(AD)是好发于老年人的CNS退行性疾病,以认知能力下降及记忆受损为特征,同时伴发精神症状,严重影响患者的日常生活。肠道菌群是居住在胃肠道中的所有微生物的集合,是人体不可分割的一部分。肠道菌群可以通过脑-肠轴影响CNS,从而增加AD的发生风险。目前获批用于治疗AD的传统药物治疗效果不理想,因此急需一种新的AD治疗方法。本文将对肠道菌群与AD的关系进行阐述,探寻以肠道菌群为靶点的AD新疗法。 展开更多
关键词 alzheimer’s病 肠道菌群 病理机制 新疗法
下载PDF
p38-MAPK and CDK5,signaling pathways in neuroinflammation:a potential therapeutic intervention in Alzheimer's disease? 被引量:1
3
作者 Vlad Ionut Viorel Ylenia Pastorello +1 位作者 Nosherwan Bajwa Mark Slevin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1649-1650,共2页
Alzheimer’s disease(AD),the most common type of dementia,affects millions of people worldwide,putting a significant strain on healthcare infrastructure and societal resources.AD is characte rized by the build-up of a... Alzheimer’s disease(AD),the most common type of dementia,affects millions of people worldwide,putting a significant strain on healthcare infrastructure and societal resources.AD is characte rized by the build-up of amyloid-beta(Aβ)plaques and neurofibrillary to ngles containing hyperphosphorylated tau protein. 展开更多
关键词 alzheimer TAU
下载PDF
Autolysosomal acidification impairment as a mediator for TNFR1 induced neuronal necroptosis in Alzheimer’s disease 被引量:1
4
作者 Evridiki Asimakidou Richard Reynolds +1 位作者 Anna M.Barron Chih Hung Lo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1869-1870,共2页
Neuronal necroptosis-an emerging form of regulated cell death associated with neuroinflammatory signaling:Alzheimer’s disease(AD)is characterized by the presence of extracellular amyloid-β(Aβ)plaques and intracellu... Neuronal necroptosis-an emerging form of regulated cell death associated with neuroinflammatory signaling:Alzheimer’s disease(AD)is characterized by the presence of extracellular amyloid-β(Aβ)plaques and intracellular tau neurofibrillary tangles as well as progressive neuronal loss.Recent evidence has suggested that prolonged neuroinflammation with increased levels of cytokines,arising from neuronal injury,innate immune responses from glial cells,and peripheral inflammation,leads to neuronal death and AD progression. 展开更多
关键词 alzheimer death tau
下载PDF
Suppression of mature TAU isoforms prevents Alzheimer's disease-like amyloid-beta oligomer-induced spine loss in rodent neurons 被引量:1
5
作者 Sarah Buchholz Hans Zempel 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1655-1657,共3页
Introduction:TAU isoforms as disease mediators:The microtubule-associated protein TAU is predominantly present in the axons of neurons under physiological conditions.In Alzheimer’s disease(AD)and related tauopathies,... Introduction:TAU isoforms as disease mediators:The microtubule-associated protein TAU is predominantly present in the axons of neurons under physiological conditions.In Alzheimer’s disease(AD)and related tauopathies,TAU also mislocalizes("TAU missorting")to the soma and the dendrites,where it eventually forms aggregates,the so-called neurofibrillary tangles(for review see Zimmer-Bensch and Zempel,2021;Zempel,2023). 展开更多
关键词 alzheimer Zimmer TAU
下载PDF
小脑经颅磁刺激技术在Alzheimer’s病认知康复中的研究进展
6
作者 王茜茜 汪彤 +1 位作者 宋波 石静萍 《临床神经病学杂志》 CAS 2024年第4期308-310,共3页
Alzheimer’s病(AD)是以进行性认知功能障碍和行为损害为主要表现的神经退行性疾病,至今仍缺乏有效的药物治疗手段。经颅磁刺激(TMS)是一种非侵入性脑刺激技术,在改善和调节认知功能方面的作用日益凸显。以往TMS刺激的靶区集中在大脑皮... Alzheimer’s病(AD)是以进行性认知功能障碍和行为损害为主要表现的神经退行性疾病,至今仍缺乏有效的药物治疗手段。经颅磁刺激(TMS)是一种非侵入性脑刺激技术,在改善和调节认知功能方面的作用日益凸显。以往TMS刺激的靶区集中在大脑皮质,但越来越多的研究表明,刺激小脑不仅可以调节大脑运动皮质区,并且对远隔的大脑认知相关脑区有调控和整合作用。因此,小脑已逐渐成为AD认知康复的非侵入性调控治疗潜在靶点。本文总结了小脑参与认知功能调控的解剖和功能基础以及小脑TMS调控认知功能的相关研究进展。 展开更多
关键词 小脑 alzheimer’s病 非侵入性调控 经颅磁刺激
下载PDF
Targeting tau in Alzheimer's disease:from mechanisms to clinical therapy 被引量:4
7
作者 Jinwang Ye Huali Wan +1 位作者 Sihua Chen Gong-Ping Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1489-1498,共10页
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur... Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease. 展开更多
关键词 ACETYLATION alzheimer’s disease cognitive deficits GLIOSIS mitochondria damage NEUROINFLAMMATION phosphorylation synaptic impairments TAU tau immunotherapy
下载PDF
Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease 被引量:2
8
作者 Yong Tang Jing Wei +14 位作者 Xiao-Fang Wang Tao Long Xiaohong Xiang Liqun Qu Xingxia Wang Chonglin Yu Xingli Xiao Xueyuan Hu Jing Zeng Qin Xu Anguo Wu Jianming Wu Dalian Qin Xiaogang Zhou Betty Yuen-Kwan Law 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2467-2479,共13页
Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting... Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects. 展开更多
关键词 alzheimer’s disease AMYLOID-BETA apoptosis AUTOPHAGY Caenorhabditis elegans Citri Reticulatae Semen
下载PDF
Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents 被引量:1
9
作者 Willian Orlando Castillo-Ordoñez Nohelia Cajas-Salazar Mayra Alejandra Velasco-Reyes 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期846-854,共9页
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester... Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes. 展开更多
关键词 alzheimer’s disease EPIGENETICS genes METHYLATION natural products
下载PDF
Correlative factors of poor prognosis and abnormal cellular immune function in patients with Alzheimer’s disease 被引量:2
10
作者 Hua Bai Hong-Mei Zeng +2 位作者 Qi-Fang Zhang Yue-Zhi Hu Fei-Fei Deng 《World Journal of Clinical Cases》 SCIE 2024年第6期1063-1075,共13页
BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation... BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis. 展开更多
关键词 alzheimer’s disease Cellular immunity PROGNOSIS T lymphocytes Magnetic resonance spectroscopy
下载PDF
Sorl1 knockout inhibits expression of brain-derived neurotrophic factor:involvement in the development of late-onset Alzheimer's disease 被引量:2
11
作者 Mingri Zhao Xun Chen +7 位作者 Jiangfeng Liu Yanjin Feng Chen Wang Ting Xu Wanxi Liu Xionghao Liu Mujun Liu Deren Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1602-1607,共6页
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ... Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis. 展开更多
关键词 brain-derived neurotrophic factor late-onset alzheimer’s disease N-methyl-D-aspartate receptor sortilin-related receptor 1 SYNAPSE
下载PDF
Rebuilding insight into the pathophysiology of Alzheimer’s disease through new blood-brain barrier models 被引量:1
12
作者 Kinya Matsuo Hideaki Nshihara 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1954-1960,共7页
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur... The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research. 展开更多
关键词 alzheimer’s disease blood-brain barrier human induced pluripotent stem cells
下载PDF
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease 被引量:1
13
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 alzheimer’s disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
NLRP3/1-mediated pyroptosis:beneficial clues for the development of novel therapies for Alzheimer’s disease 被引量:1
14
作者 Bo Hu Jiaping Zhang +3 位作者 Jie Huang Bairu Luo Xiansi Zeng Jinjing Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2400-2410,共11页
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that... The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease. 展开更多
关键词 alzheimer’s disease caspase-1 GSDMD INFLAMMASOME NEUROINFLAMMATION NLRP1 NLRP3 PYROPTOSIS therapeutic strategies
下载PDF
Ferroptosis mechanism and Alzheimer's disease 被引量:5
15
作者 Lina Feng Jingyi Sun +6 位作者 Ling Xia Qiang Shi Yajun Hou Lili Zhang Mingquan Li Cundong Fan Baoliang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1741-1750,共10页
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti... Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease. 展开更多
关键词 alzheimer’s disease apolipoprotein E Fe^(2+) ferroptosis glial cell glutathione peroxidase 4 imbalance in iron homeostasis lipid peroxidation regulated cell death system Xc^(-)
下载PDF
Interplay between microglia and environmental risk factors in Alzheimer's disease 被引量:1
16
作者 Miaoping Zhang Chunmei Liang +2 位作者 Xiongjin Chen Yujie Cai Lili Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1718-1727,共10页
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ... Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments. 展开更多
关键词 alzheimer’s disease chronic stress environmental factor gut microbiota MICROGLIA particulate matter with diameter<2.5μm
下载PDF
Unveiling DNA methylation in Alzheimer’s disease:a review of array-based human brain studies 被引量:1
17
作者 Victoria Cunha Alves Eva Carro Joana Figueiro-Silva 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2365-2376,共12页
The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centere... The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression. 展开更多
关键词 alzheimer’s disease ANK1 BIN1 DNA methylation epigenome-wide association studies HOXA3 MCF2L RHBDF2
下载PDF
Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer's disease 被引量:1
18
作者 Bo Li Yujie Chen +10 位作者 Yan Zhou Xuanran Feng Guojun Gu Shuang Han Nianhao Cheng Yawen Sun Yiming Zhang Jiahui Cheng Qi Zhang Wei Zhang Jianhui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1593-1601,共9页
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime... Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis. 展开更多
关键词 alzheimer’s disease mitochondrial biogenesis neural stem cell-derived exosome SIRT1-PGC1α regional brain distribution whole brain clearing and imaging
下载PDF
Tanshinone ⅡA improves Alzheimer’s disease via RNA nuclearenriched abundant transcript 1/microRNA-291a-3p/member RAS oncogene family Rab22a axis 被引量:1
19
作者 Long-Xiu Yang Man Luo Sheng-Yu Li 《World Journal of Psychiatry》 SCIE 2024年第4期563-581,共19页
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho... BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy. 展开更多
关键词 TanshinoneⅡA alzheimer’s disease Nuclear-enriched abundant transcript 1 Member of RAS oncogene family Rab22a Reactive oxygen species
下载PDF
Detection and clearance in Alzheimer’s disease: leading with illusive chemical, structural and morphological features of the targets
20
作者 Luís Gales 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期497-498,共2页
Highly specific interactions between biomolecules,such as antigen-antibody,protein-ligand,or nucleic acid base pair complementary are on the basis of the organization of complex organisms.The same principles may be te... Highly specific interactions between biomolecules,such as antigen-antibody,protein-ligand,or nucleic acid base pair complementary are on the basis of the organization of complex organisms.The same principles may be tentatively used in molecular medicine for diagnosis and therapeutics.A molecule can be designed to selectively bind a protease and thereby inhibit the production of a peptide that forms toxic aggregates in the brain or an antibody may be produced to bind specifically to that peptide for detection or clearance purposes.Unfortunately,interference in biological systems is not that simple.For a start there is the inhibition of the physiological role of the protease;moreover,several cleavage fragments may be produced,which may continue to diverge due to putative post-translational modification and self-assembly processes,hiding the toxic target in a“soup”of peptide species varying in size,structure and chemical composition.A perspective of the current status and challenges in targeting peptide species for diagnosis and treatment in the context of Alzheimer’s disease is given. 展开更多
关键词 alzheimer DIAGNOSIS thereby
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部