The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potenti...The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.展开更多
Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is base...Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
Over the last decade,there is a surge of attention in establishing ambient assisted living(AAL)solutions to assist individuals live independently.With a social and economic perspective,the demographic shift toward an ...Over the last decade,there is a surge of attention in establishing ambient assisted living(AAL)solutions to assist individuals live independently.With a social and economic perspective,the demographic shift toward an elderly population has brought new challenges to today’s society.AAL can offer a variety of solutions for increasing people’s quality of life,allowing them to live healthier and more independently for longer.In this paper,we have proposed a novel AAL solution using a hybrid bidirectional long-term and short-term memory networks(BiLSTM)and convolutional neural network(CNN)classifier.We first pre-processed the signal data,then used timefrequency features such as signal energy,signal variance,signal frequency,empirical mode,and empirical mode decomposition.The convolutional neural network-bidirectional long-term and short-term memory(CNN-biLSTM)classifier with dimensional reduction isomap algorithm was then used to select ideal features.We assessed the performance of our proposed system on the publicly accessible human gait database(HuGaDB)benchmark dataset and achieved an accuracy rates of 93.95 percent,respectively.Experiments reveal that hybrid method gives more accuracy than single classifier in AAL model.The suggested system can assists persons with impairments,assisting carers and medical personnel.展开更多
In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). M...In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). Most of recently proposed MAC protocols for low-power embedded sensing systems(e.g. wireless sensor networks) are designed with energy efficiency as the first goal, so they are not suitable for AAL systems. Although some multi-channel MAC protocols have been proposed to address the problem, most of those protocols ignore the cost of channel switching, which can have reverse effect on network performance, especially latency of data delivery. In this paper, we propose a Delay-Sensitive Multi-channel MAC protocol(DS-MMAC) for AAL systems, which can provide high packet delivery ratio and bound low latency for data delivered to the gateway node. The novelty of the protocol is that an efficient distributed time slot scheduling and channel assignment algorithm is combined with the process of route establishment, which takes the channel switching cost into account and reduces endto-end delay to meet the required delay bound of each data flow. The performance of the proposed protocol is evaluated through extensive simulations. Results show that DS-MMAC can bound low latency for delivering detected events in AAL system to the gateway, while providing high delivery reliability and low energy consumption.展开更多
Systems for ambient assisted living(AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active...Systems for ambient assisted living(AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the serviceoriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system(ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.展开更多
IOT has carried outimportant function in converting the traditional fitness care corporation.With developing call for in population,traditional healthcare structures have reached their outmost functionality in present...IOT has carried outimportant function in converting the traditional fitness care corporation.With developing call for in population,traditional healthcare structures have reached their outmost functionality in presenting sufficient and as plenty as mark offerings.The worldwide is handling devastating developingantique population disaster and the right want for assisted-dwelling environments is turning into inevitable for senior citizens.There furthermore a determination by means of the use of way of countrywide healthcare organizations to increase crucial manual for individualized,right blanketed care to prevent and manipulate excessive coronial situations.Many tech orientated packages related to HealthMonitoring have been delivered these days as taking advantage of net boom everywhere on globe,manner to improvements in cellular and in IOT generation.Such as optimized indoor networks insurance,community shape,and fairly-lowdevice fee performances,advanced tool reliability,low device energy consumption,and hundreds higher unusual common usual performance in network safety and privacy.Studies have highlighted fantastic advantages of integrating IOT with health care location and as era is improving the rate also cannot be that terrific of a problem.However,many challenges in this new paradigm shift notwithstanding the fact that exist,that need to be addressed.So the out most purpose of this research paper is 3 essential departments:First,evaluation of key elements that drove the adoption and boom of the Internet of factors based totally domestic some distance off monitoring;Second,present fashionable improvement of IOT in home a long manner off monitoring shape and key building gadgets;Third,communicate future very last effects and distinct guidelines of such type a long way off monitoring packages going ahead.Such Research is a wonderful manner in advance now not outstanding in IOT Terminology but in standard fitness care location.展开更多
Ambient assistive living environments require sophisticated information fusion and reasoning techniques to accurately identify activities of a person under care. In this paper, we explain, compare and discuss the appl...Ambient assistive living environments require sophisticated information fusion and reasoning techniques to accurately identify activities of a person under care. In this paper, we explain, compare and discuss the application of two powerful fusion methods, namely dynamic Bayesian networks (DBN) and Dempster-Shafer theory (DST), for human activity recognition. Both methods are described, the implementation of activity recognition based on these methods is explained, and model acquisition and composition are suggested. We also provide functional comparison of both methods as well as performance comparison based on the publicly available activity dataset. Our findings show that in performance and applicability, both DST and DBN are very similar; however, significant differences exist in the ways the models are obtained. DST being top-down and knowledge-based, differs significantly in qualitative terms, when compared with DBN, which is data-driven. These qualitative differences between DST and DBN should therefore dictate the selection of the appropriate model to use, given a particular activity recognition application.展开更多
基金supported by the Ministry of Higher Education,Malaysia under Grant No.R.J130000.7823.4L626
文摘The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.
基金supported by the National Nature Science Foundation of China (61170169, 61170168)
文摘Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
基金This research was supported by a grant(2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Republic of Korea.
文摘Over the last decade,there is a surge of attention in establishing ambient assisted living(AAL)solutions to assist individuals live independently.With a social and economic perspective,the demographic shift toward an elderly population has brought new challenges to today’s society.AAL can offer a variety of solutions for increasing people’s quality of life,allowing them to live healthier and more independently for longer.In this paper,we have proposed a novel AAL solution using a hybrid bidirectional long-term and short-term memory networks(BiLSTM)and convolutional neural network(CNN)classifier.We first pre-processed the signal data,then used timefrequency features such as signal energy,signal variance,signal frequency,empirical mode,and empirical mode decomposition.The convolutional neural network-bidirectional long-term and short-term memory(CNN-biLSTM)classifier with dimensional reduction isomap algorithm was then used to select ideal features.We assessed the performance of our proposed system on the publicly accessible human gait database(HuGaDB)benchmark dataset and achieved an accuracy rates of 93.95 percent,respectively.Experiments reveal that hybrid method gives more accuracy than single classifier in AAL model.The suggested system can assists persons with impairments,assisting carers and medical personnel.
基金supported by the International S&T Cooperation Program of China (ISTCP) under Grant No. 2013DFA10690the National Science Foundation of China (NSFC) under Grant No. 61100180
文摘In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). Most of recently proposed MAC protocols for low-power embedded sensing systems(e.g. wireless sensor networks) are designed with energy efficiency as the first goal, so they are not suitable for AAL systems. Although some multi-channel MAC protocols have been proposed to address the problem, most of those protocols ignore the cost of channel switching, which can have reverse effect on network performance, especially latency of data delivery. In this paper, we propose a Delay-Sensitive Multi-channel MAC protocol(DS-MMAC) for AAL systems, which can provide high packet delivery ratio and bound low latency for data delivered to the gateway node. The novelty of the protocol is that an efficient distributed time slot scheduling and channel assignment algorithm is combined with the process of route establishment, which takes the channel switching cost into account and reduces endto-end delay to meet the required delay bound of each data flow. The performance of the proposed protocol is evaluated through extensive simulations. Results show that DS-MMAC can bound low latency for delivering detected events in AAL system to the gateway, while providing high delivery reliability and low energy consumption.
基金partially supported by the European Commission in project Robot-Era under contract FP7-288899
文摘Systems for ambient assisted living(AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the serviceoriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system(ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.
文摘IOT has carried outimportant function in converting the traditional fitness care corporation.With developing call for in population,traditional healthcare structures have reached their outmost functionality in presenting sufficient and as plenty as mark offerings.The worldwide is handling devastating developingantique population disaster and the right want for assisted-dwelling environments is turning into inevitable for senior citizens.There furthermore a determination by means of the use of way of countrywide healthcare organizations to increase crucial manual for individualized,right blanketed care to prevent and manipulate excessive coronial situations.Many tech orientated packages related to HealthMonitoring have been delivered these days as taking advantage of net boom everywhere on globe,manner to improvements in cellular and in IOT generation.Such as optimized indoor networks insurance,community shape,and fairly-lowdevice fee performances,advanced tool reliability,low device energy consumption,and hundreds higher unusual common usual performance in network safety and privacy.Studies have highlighted fantastic advantages of integrating IOT with health care location and as era is improving the rate also cannot be that terrific of a problem.However,many challenges in this new paradigm shift notwithstanding the fact that exist,that need to be addressed.So the out most purpose of this research paper is 3 essential departments:First,evaluation of key elements that drove the adoption and boom of the Internet of factors based totally domestic some distance off monitoring;Second,present fashionable improvement of IOT in home a long manner off monitoring shape and key building gadgets;Third,communicate future very last effects and distinct guidelines of such type a long way off monitoring packages going ahead.Such Research is a wonderful manner in advance now not outstanding in IOT Terminology but in standard fitness care location.
文摘Ambient assistive living environments require sophisticated information fusion and reasoning techniques to accurately identify activities of a person under care. In this paper, we explain, compare and discuss the application of two powerful fusion methods, namely dynamic Bayesian networks (DBN) and Dempster-Shafer theory (DST), for human activity recognition. Both methods are described, the implementation of activity recognition based on these methods is explained, and model acquisition and composition are suggested. We also provide functional comparison of both methods as well as performance comparison based on the publicly available activity dataset. Our findings show that in performance and applicability, both DST and DBN are very similar; however, significant differences exist in the ways the models are obtained. DST being top-down and knowledge-based, differs significantly in qualitative terms, when compared with DBN, which is data-driven. These qualitative differences between DST and DBN should therefore dictate the selection of the appropriate model to use, given a particular activity recognition application.