期刊文献+
共找到593篇文章
< 1 2 30 >
每页显示 20 50 100
3D shear wave velocity and azimuthal anisotropy structure in the shallow crust of Binchuan Basin in Yunnan, Southwest China, from ambient noise tomography
1
作者 Jing Wang Huajian Yao +2 位作者 Ying Liu Baoshan Wang Weitao Wang 《Earthquake Research Advances》 CSCD 2024年第4期73-82,共10页
The Binchuan Basin in northwest Yunnan, southwest China, is a rift basin developed at the intersection of the Red River Fault and Chenghai Fault, where historical earthquakes have occurred. Understanding the fine velo... The Binchuan Basin in northwest Yunnan, southwest China, is a rift basin developed at the intersection of the Red River Fault and Chenghai Fault, where historical earthquakes have occurred. Understanding the fine velocity structure of the shallow crust in this region can help improve earthquake location accuracy and our understanding of the relationship between fault zone structures and fault slip behaviors. Using the continuous waveform data recorded by 381 dense array stations in 2017, we obtained 7 915 Rayleigh-wave phase velocity dispersion curves in the period band of 0.2–6 s from ambient noise cross-correlation functions after rigorous data processing and quality control. We determined 3D isotropic and azimuthally anisotropic shear wave velocity models at depths above 6 km in the shallow crust based on the direct surface wave azimuthal anisotropic tomography method. The isotropic model reveals a strong correspondence between the S-wave velocity structure at depths of 0–1 km and the regional topography and lithology. The Binchuan depocenter, Zhoucheng depocenter, Xiangyun Basin, and Xihai Rift Basin are primarily composed of Quaternary deposits, which show low-velocity anomalies, while the regions with the Paleozoic shale, limestone, and basalt exhibit high-velocity anomalies. The nearly N–S orientation of fast directions from azimuthal anisotropy models are mainly controlled by the active Binchuan Fault with N–S strike as well as the NNW-oriented primary compressive stress. 展开更多
关键词 Binchuan Basin ambient noise tomography Shallow crustal structure Azimuthal anisotropy
下载PDF
Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods
2
作者 Jianhui Tian Yuan Gao Ying Li 《Earthquake Research Advances》 CSCD 2024年第4期61-72,共12页
When using ambient noise data to invert velocity and anisotropic structures,the two-station inter-correlation method requires synchronous stations.If there are multiple temporary seismic arrays with different observat... When using ambient noise data to invert velocity and anisotropic structures,the two-station inter-correlation method requires synchronous stations.If there are multiple temporary seismic arrays with different observation periods in the study area,the seismic arrays are usually used selectively.This paper takes the Sanjiang lateral collision zone as an example,and utilizes the ambient noise data of multiple temporary seismic arrays at different observation periods to improve the accuracy of regional velocity structure and anisotropy by anchoring permanent seismic stations.In this paper,notable enhancements in S-wave velocity and azimuthal anisotropy imaging accuracy are achieved by integrating data from three temporary seismic arrays(SJ-Array,SL-Array,and Chin Array-I)with the permanent seismic network.The imaging resolutions for the S-wave velocity and azimuthal anisotropy above 40 km are 0.4°×0.4°and 0.5°×0.5°,respectively.In the region of the most concentrated array coverage,the imaging resolution of S-wave velocity can reach 0.33°×0.33°at depths of less than 30 km.These findings underscore the significant improvement in deep structure imaging accuracy by the synergistic integration of ambient noise data from multiple temporary seismic arrays. 展开更多
关键词 Temporary seismic arrays ambient noise data S-wave velocity Azimuthal anisotropy Imaging accuracy
下载PDF
Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea
3
作者 Minzhe Luo Siqing Liu +5 位作者 Xing Xu Qingxian Zhao Ruifeng Wu Xianqing Wang Chenglong Wei Songyong Yuan 《Earthquake Research Advances》 CSCD 2024年第4期83-91,共9页
Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies.Based on data from several broadband shallow-sea type ocean bottom seismometers(SOBSs)deployed in the Bohai Se... Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies.Based on data from several broadband shallow-sea type ocean bottom seismometers(SOBSs)deployed in the Bohai Sea and north Yellow Sea,this paper analyzes the submarine seismic ambient noise characteristics.It explores the theory,technology,method and application of the submarine seismic ambient noise imaging using the single-point horizontal and vertical spectral ratio method(HVSR).The observations yield the following results:1)Submarine seismic ambient noise has consistent and constant energy,making it an appropriate passive seismic source for submarine high-frequency surface wave investigation.2)Using the HVSR approach,a single threecomponent OBS could differentiate between the basement and sediments.Array seismic observation could be utilized to extract the frequency dispersion curve and invert it to obtain the velocity structure for more accurate stratification.3)The SOBS we use is suitable for submarine surface wave exploration.4)Tomography results with greater resolution and deeper penetration could be obtained by combining active and passive sources in a simultaneous inversion of the HVSR and frequency dispersion curve.Seamless land-to-ocean seismic research can be accomplished with submarine seismic ambient noise imaging technologies. 展开更多
关键词 Broadband ocean bottom seismometer Submarine seismic ambient noise Horizontal and vertical spectral ratio(HVSR) Surface wave exploration
下载PDF
Crustal structure of the northeastern Tibetan plateau,the Ordos block and the Sichuan basin from ambient noise tomography 被引量:45
4
作者 Yong Zheng Yingjie Yang +3 位作者 Michael H. Ritzwoller Xiufen Zheng Xiong Xiong Zuning Li 《Earthquake Science》 CSCD 2010年第5期465-476,共12页
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of t... We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China. Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s. Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 kin. The phase velocities at short periods (〈20 s) are lower in the Sichuan basin, the northwest segment of the Ordos block and the Weihe graben, and outline sedimentary deposits. At intermediate and long periods (〉25 s), strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau, reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east. Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau, the Sichuan basin and the Ordos block. The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle. There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau, whose width narrows towards the eastern margin of the plateau. No low velocity zone is apparent beneath the Qinling orogen, suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle. 展开更多
关键词 phase velocity Ordos block ambient noise tomography crustal structure
下载PDF
Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography 被引量:28
5
作者 Xinlei Sun Xiaodong Song +2 位作者 Sihua Zheng Yingjie Yang Michael H. Ritzwoller 《Earthquake Science》 CSCD 2010年第5期449-463,共15页
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin... We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust. 展开更多
关键词 ambient noise surface wave TOMOGRAPHY crust and upper mantle China
下载PDF
Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives 被引量:15
6
作者 Huajian Yao 《Earthquake Science》 CSCD 2012年第5期371-383,共13页
High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise a... High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations. 展开更多
关键词 SE Tibet lithospheric structure DEFORMATION ambient noise earthquake surface waves
下载PDF
Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data 被引量:9
7
作者 Zhen J.Xu Xiaodong Song Sihua Zheng 《Earthquake Science》 2013年第5期267-281,共15页
We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography. We combine dispersion measurements from ambient noise correlation and traditional earthq... We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography. We combine dispersion measurements from ambient noise correlation and traditional earthquake data. The stations include the China National Seismic Network, global networks, and all the available PASSCAL stations in the region over the years. The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s, which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about 150 kin. We also derive new models of the study region for crustal thickness and averaged S velocities for upper, mid, and lower crust and the uppermost mantle. The models provide a fundamental data set for understanding continental dynamics and evolution. The tomography results reveal significant features of crust and upper mantle structure, including major basins, Moho depth variation, mantle velocity contrast between eastern and western North China Craton, widespread low-velocity zone in mid- crust in much of the Tibetan Plateau, and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E-W variations. The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries. A patch of high velocity anomaly is found under the eastern part of the TP, which may indicate intact mantle lithosphere. Mantle lithosphere change from the western to The Tanlu Fault appears boundary. shows striking systematic eastern North China Craton. to be a major lithosphere 展开更多
关键词 Surface wave tomography China ambient noise Tibetan Plateau North China Craton
下载PDF
High-resolution crustal velocity imaging using ambient noise recordings from a high-density seismic array:An example from the Shangrao section of the Xinjiang basin,China 被引量:9
8
作者 Gaochun Wang Xiaobo Tian +2 位作者 Lianglei Guo Jiayong Yan Qingtian Lyu 《Earthquake Science》 CSCD 2018年第5期242-251,共10页
A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi... A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure. 展开更多
关键词 high-density seismic array ambient noise tomography shallow crustal structure HIGH-RESOLUTION
下载PDF
Ambient noise spectral properties in the north area of Xisha 被引量:6
9
作者 DA Lianglong WANG Chao +1 位作者 HAN Mei ZHANG Lin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第12期206-211,共6页
Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so... Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed. 展开更多
关键词 ambient noise cross correlation wind speed
下载PDF
Comparison of ground truth location of earthquake from InSAR and from ambient seismic noise: A case study of the 1998 Zhangbei earthquake 被引量:8
10
作者 Jun Xie Xiangfang Zeng +1 位作者 Weiwen Chen Zhongwen Zhan 《Earthquake Science》 CSCD 2011年第2期239-247,共9页
Because ambient seismic noise provides estimated Green’s function (EGF) between two sites with high accuracy, Rayleigh wave propagation along the path connecting the two sites is well resolved. Therefore, earthquak... Because ambient seismic noise provides estimated Green’s function (EGF) between two sites with high accuracy, Rayleigh wave propagation along the path connecting the two sites is well resolved. Therefore, earthquakes which are close to one seismic station can be well located with calibration extracting from EGF. We test two algorithms in locating the 1998 Zhangbei earthquake, one algorithm is waveform-based, and the other is traveltime-based. We first compute EGF between station ZHB (a station about 40 km away from the epicenter) and five IC/IRIS stations. With the waveform-based approach, we calculate 1D synthetic single-force Green’s functions between ZHB and other four stations, and obtain traveltime corrections by correlating synthetic Green’s functions with EGFs in period band of 10–30 s. Then we locate the earthquake by minimizing the differential travel times between observed earthquake waveform and the 1D synthetic earthquake waveforms computed with focal mechanism provided by Global CMT after traveltime correction from EGFs. This waveform-based approach yields a location which error is about 13 km away from the location observed with InSAR. With the traveltime-based approach, we begin with measuring group velocity from EGFs as well as group arrival time on observed earthquake waveforms, and then locate the earthquake by minimizing the difference between observed group arrival time and arrival time measured on EGFs. This traveltime-based approach yields accuracy of 3 km, Therefore it is feasible to achieve GT5 (ground truth location with accuracy 5 km) with ambient seismic noises. The less accuracy of the waveform-based approach was mainly caused by uncertainty of focal mechanism. 展开更多
关键词 ambient seismic noise estimated Green’s function ground truth location Rayleigh wave
下载PDF
Composition of high frequency ambient noise from cross-correlation:A case study using a small aperture array 被引量:6
11
作者 Weitao Wang Sidao Ni Baoshan Wang 《Earthquake Science》 CSCD 2010年第5期433-438,共6页
Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of ... Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of this method. Previous studies confirm that ambient noise in the long period (3 s and longer) mostly consists of surface wave, and 0.25-2.5 s noise consists more of body waves. In this paper, we perform cross correlation processing at much higher frequency (30-70 Hz) using ambient noise recorded by a small aperture array. No surface waves emerge from noise correlation function (NCF), but weak P waves emerge. The absence of surface wave in NCF is not due to high attenuation since surface waves are strong from active source, therefore probably the high ambient noise mostly consists of body wave and lacks surface wave. Origin of such high frequency body waves in ambient noise remains to be studied. 展开更多
关键词 ambient noise cross correlation Green's function body wave high frequency
下载PDF
High-resolution Rayleigh wave phase velocity maps from ambient noise tomography in North China 被引量:6
12
作者 Jiatie Pan Institute of Geophysics, China Earthquake Administration, Beijing 100081, China 《Earthquake Science》 CSCD 2012年第3期241-251,共11页
We presented high-resolution Rayleigh wave phase velocity maps at periods ranging from 5 s to 30 s in the northeast part of the North China Craton (NNCC). Continuous time-series of vertical component between October 2... We presented high-resolution Rayleigh wave phase velocity maps at periods ranging from 5 s to 30 s in the northeast part of the North China Craton (NNCC). Continuous time-series of vertical component between October 2006 and December 2008, recorded by 187 broadband stations temporarily deployed in the NNCC region, have been cross-correlated to obtain estimated fundamental mode Rayleigh wave Green’s functions. Using the frequency and time analysis technique based on continuous wavelet transformation, we measured 3 667 Rayleigh wave phase velocity dispersion curves. High-resolution phase velocity maps at periods of 5, 10, 20 and 30 s were reconstructed with grid size 0.25°× 0.25°, which reveal lateral heterogeneity of shear wave structure in the crust and upper mantle of NNCC. For periods shorter than 10 s, the phase velocity variations are well correlated with the principal geological units in the NNCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20 s to 30 s, high phase velocity observed in eastern NCC is coincident with the thin crust, whereas low phase velocities imaged in central NCC is correlated to the thick crust. However, the low-velocity anomaly in the Beijing-Tianjin-Tangshan region displayed in the 20 s and 30 s phase maps may be associated with fluids. 展开更多
关键词 Rayleigh wave phase velocity ambient noise tomography wavelet transformation North China Craton
下载PDF
Ambient noise Love wave tomography of China 被引量:5
13
作者 ZhiGao Yang XiaoDong Song 《Earth and Planetary Physics》 CSCD 2019年第3期218-231,共14页
We first report on the Love wave tomography of China based on ambient noise cross-correlations. We used 3 years of continuous waveform data recorded by 206 broadband seismic stations on the Chinese Mainland and 36 nei... We first report on the Love wave tomography of China based on ambient noise cross-correlations. We used 3 years of continuous waveform data recorded by 206 broadband seismic stations on the Chinese Mainland and 36 neighboring global stations and obtained Love wave empirical Green's functions from cross-correlations of the horizontal components. The Love wave group velocity dispersion measurements were used to construct dispersion maps of 8-to 40-s periods, which were then inverted to obtain a threedimensional horizontally polarized S-wave(SH) velocity structure. The resolution was approximately 4°× 4° and 8°× 8° for eastern and western China, respectively, and extended to a depth of approximately 50 km. The SH model was generally consistent with a previously published vertically polarized S-wave(SV) model and showed large-scale features that were consistent with geological units, such as the major basins and changes in the crustal thickness across the north-south gravity lineament. The SH and SV models also showed substantial differences, which were used to examine the subsurface radial anisotropy. We define the radial anisotropy parameter asψ = 2(V_(SH)-V_(SV))/(V_(SH)+ V_(SV)). At a shallow depth, we observed significant radial anisotropy under major basins, which may be related to thick sedimentary layers. At the mid to lower crust, most of the Chinese continent showed strong positive radial anisotropy(SH > SV).Central and southern Tibet showed strong positive anisotropy, whereas the radial anisotropy was relatively weak at the northern and eastern margins, which suggests a change in deformation style from the plateau interior to its margins. The North China craton showed prominent positive radial anisotropy, which may be related to decratonization and strong extension since the Mesozoic Era. Love waves are less well retrieved than Rayleigh waves from ambient noise cross-correlations. Increasing the duration of the cross-correlation data beyond 4 to 8 years may not aid in retrieving Love waves of longer periods, for which improved methods need to be explored. 展开更多
关键词 ambient noise TOMOGRAPHY LOVE WAVE RADIAL ANISOTROPY China
下载PDF
Ambient noise surface wave tomography of marginal seas in east Asia 被引量:9
14
作者 Qing Wang XiaoDong Song JianYe Ren 《Earth and Planetary Physics》 2017年第1期13-25,共13页
We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan,Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green's functions from inter-... We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan,Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green's functions from inter-station correlations of 12 months of continuous waveform data at 573 broadband stations in the region. We obtained group and phase velocity dispersion curves and dispersion maps for periods from 10 to 70 s and inverted for 3D Vs model of the crust and uppermost mantle. Moho and lithosphere thickness were derived from the 3D model. We observed three prominent low velocity zones in the upper mantle, two in the accretionary wedges above the Pacific and Philippine subduction slabs and one beneath the Changbai Mountain region. The crust and lithosphere are generally thin in the region. The velocity anomalies, crustal thickness, and lithosphere thickness all show a similar trend in NNE-SSW direction. The lithosphere shows a striking " sausage"-type structure with alternating thickness. The crust thickness and lithosphere thickness both decrease progressively from NW to SE direction, which coincides with the distribution of episodic magmatism in SE China.We propose that the subduction of paleo-Pacific slab and its rollback were mainly responsible for the crustal and lithosphere extension and the mantle lithosphere removal in east Asia. 展开更多
关键词 ambient noise tomography east Asia MOHO LITHOSPHERE EXTENSION
下载PDF
Love wave tomography in Italy from seismic ambient noise 被引量:3
15
作者 Hongyi Li Fabrizio Bernardi Alberto Michelini 《Earthquake Science》 CSCD 2010年第5期487-495,共9页
We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy. Transverse-component ambient noise data from October 2005... We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy. Transverse-component ambient noise data from October 2005 through March 2007 recorded at 114 seismic stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broadband network, the Mediterranean Very Broadband Seismographic Network (MedNet) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) yield more than 2 000 Love wave group velocity measurements using the multiple-filter analysis technique. In the short period band (5-20 s), the cross-correlations show clearly one-sided asymmetric feature due to non-tmiform noise distribution and high local activities, and in the long period band (〉20 s) this feature becomes weak owing to more diffusive noise distribution. Based on these measurements, Love wave group velocity dispersion maps in the 8-34 s period band are constructed, then the SH wave velocity structures from the Love wave dispersions are inverted. The final results obtained from Love wave data are overall in good agreement with those from Rayleigh waves. Both Love and Rayleigh wave inversions all reveal that the Po plain basin is resolved with low velocity at shallow depth, and the Tyrrhenian sea is characterized with higher velocity below 8 km due to its thin oceanic crust. 展开更多
关键词 ambient noise Love wave TOMOGRAPHY crustal structure ITALY
下载PDF
Semiannual velocity variations around the 2008 M_w 7.9 Wenchuan Earthquake fault zone revealed by ambient noise and ACROSS active source data 被引量:4
16
作者 Haichao Chen Hongkui Ge Fenglin Niu 《Earthquake Science》 2014年第5期529-540,共12页
We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 Mw7.9 Wenchuan earthquake in China from July 2009 to January 2012,jointly using accurately c... We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 Mw7.9 Wenchuan earthquake in China from July 2009 to January 2012,jointly using accurately controlled routinely operated signal system active source and seismic noise-based monitoring technique.Our measurements show that the temporal velocity change is not homogeneous and highly localized in the damaged fault zone and the adjacent areas.Velocity variations from the active and passive methods are quite consistent,which both are characterized by ±0.2 % seasonal variation,with peak and trough at winter and summer,respectively.The periodic velocity variation within fault zone exhibits remarkably positive correlation with barometric pressure with stress sensitivity in the order of 10-6Pa-1,suggesting that the plausible mechanism might be the crack density variation of the shallow subsurface medium of the damaged fault zone in response to the cyclic barometric pressure loading. 展开更多
关键词 Velocity variation - 2008 WenchuanEarthquake ACROSS active source ambient noise
下载PDF
Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data 被引量:3
17
作者 Yingjie Yang Weisen Shen Michael H. Ritzwoller 《Earthquake Science》 CSCD 2011年第1期55-64,共10页
We discuss two array-based tomography methods, ambient noise tomography (ANT) and two-plane- wave earthquake tomography (TPWT), which are capable of taking advantage of emerging large-scale broadband seismic array... We discuss two array-based tomography methods, ambient noise tomography (ANT) and two-plane- wave earthquake tomography (TPWT), which are capable of taking advantage of emerging large-scale broadband seismic arrays to generate high resolution phase velocity maps, but in complementary period band: ANT at 8-40 s and TPWT at 25-100 s period. Combining these two methods generates surface wave dispersion maps from 8 to 100 s periods, which can be used to construct a 3D vs model from the surface to -200 km depth. As an illustration, we apply the two methods to the USArray/Transportable Array. We process seismic noise data from over 1 500 stations obtained from 2005 through 2009 to produce Rayleigh wave phase velocity maps from 8 to 40 s period, and also perform TPWT using -450 teleseismic earthquakes to obtain phase velocity maps between 25 and 100 s period. Combining dispersion maps from ANT and TPWT, we construct a 3D vs model from the surface to a depth of 160 km in the western and central USA. These surface wave tomography methods can also be applied to other rapidly growing seismic networks such as those in China. 展开更多
关键词 ambient noise Rayleigh wave surface wave tomography
下载PDF
Analysis of EMD Algorithm for Identification and Extraction of An Acoustic Signal in Underwater Channel Against Wind Driven Ambient Noise 被引量:2
18
作者 S.Sakthivel MURUGAN V.NATARAJAN K.MAHESWARAN 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期645-657,共13页
Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, t... Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals. 展开更多
关键词 EMD IMF SNR ambient noises underwater acoustic signals FFT
下载PDF
Stationary phase approximation in the ambient noise method revisited 被引量:3
19
作者 Zhongwen Zhan Sidao Ni 《Earthquake Science》 CSCD 2010年第5期425-431,共7页
The method of extracting Green's function between stations from cross correlation has proven to be effective theoretically and experimentally. It has been widely applied to surface wave tomography of the crust and up... The method of extracting Green's function between stations from cross correlation has proven to be effective theoretically and experimentally. It has been widely applied to surface wave tomography of the crust and upmost mantle. However, there are still controversies about why this method works. Snieder employed stationary phase approximation in evaluating contribution to cross correlation function from scatterers in the whole space, and concluded that it is the constructive interference of waves emitted by the scatterers near the receiver line that leads to the emergence of Green's function. His derivation demonstrates that cross correlation function is just the convolution of noise power spectrum and the Green's function. However, his derivation ignores influence from the two stationary points at infinities, therefore it may fail when attenuation is absent. In order to obtain accurate noise-correlation function due to scatters over the whole space, we compute the total contribution with numerical integration in polar coordinates. Our numerical computation of cross correlation function indicates that the incomplete stationary phase approximation introduces remarkable errors to the cross correlation function, in both amplitude and phase, when the frequency is low with reasonable quality factor Q. Our results argue that the dis- tance between stations has to be beyond several wavelengths in order to reduce the influence of this inaccuracy on the applications of ambient noise method, and only the station pairs whose distances are above several (〉5) wavelengths can be used. 展开更多
关键词 ambient seismic noise stationary phase approximation Green's function
下载PDF
Imaging mantle transition zone discontinuities in southwest China from dense array ambient noise interferometry 被引量:3
20
作者 Jikun Feng Huajian Yao Weitao Wang 《Earthquake Science》 CSCD 2018年第5期301-310,共10页
Body waves retrieved from ambient noise cross-correlation functions(NCFs) have been reported by more and more recent studies in addition to the dominant recovered surface waves. And one of important applications of ... Body waves retrieved from ambient noise cross-correlation functions(NCFs) have been reported by more and more recent studies in addition to the dominant recovered surface waves. And one of important applications of these recovered body waves is to investigate the structure of discontinuities within the mantle transition zone(MTZ). In this study, clear body wave phases reflected from the MTZ discontinuities at 410 km and 660 km have been observed on the NCFs in the frequency band of 0.1–0.2 Hz from a dense regional seismic array in southwest China. The original timedomain reflected signals in the NCFs were first converted to the depth-domain NCFs based on a velocity model before they were further stacked spatially within different bins. Then the depth-domain NCFs were stacked to investigate the lateral variations of the MTZ discontinuities, that is, the 410-km and 660-km discontinuities. Our results exhibit a simple and lateral coherent P;P phase and a much more complicated P;P phase along two profiles, which are in good agreement with mineralogical prediction and recent receiver function studies in the same area. This interferometric method can provide stable reflected body wave phases mainly in the frequency band 0.1–0.2 Hz due to the secondary microseism noise, which can be potentially used for high-resolution mantle interface imaging. This approach is also a good complement to traditional imaging methods, such as receiver function imaging. 展开更多
关键词 ambient noise interferometry mantle transition zone 410-km and 660-km discontinuities reflected body waves southwest China
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部