Objective:To investigate the relationship between ambient sulfur dioxide(SO2)exposure and semen quality parameters.Methods:A systematic literature search was conducted to identify relevant studies investigating the as...Objective:To investigate the relationship between ambient sulfur dioxide(SO2)exposure and semen quality parameters.Methods:A systematic literature search was conducted to identify relevant studies investigating the association between SO2 exposure and semen quality parameters.This search encompassed the timeframe from January 2000 to May 2023 and included electronic databases such as Web of Science,Google Scholar,PubMed,Cochrane,and Scopus.Pooled effect estimates with 95%confidence intervals(CI)were calculated using percent changes(PC).The meta-analysis included seven studies with 6711 participants and 15087 semen samples.Results:The results revealed a significant negative association between ambient SO2 exposure and certain semen quality parameters.In particular,SO2 exposure was associated with a significant decrease in progressive motility(PC=0.032;95%CI:-0.063 to-0.001;P=0.044)and sperm concentration(PC=-0.020;95%CI:-0.036 to-0.005;P=0.012).However,no statistically significant associations were observed for total sperm count(PC=-0.038;95%CI:-0.079 to 0.003;P=0.070),seminal fluid volume(PC=-0.009;95%CI:-0.048 to-0.030;P=0.662)and sperm motility(PC=-0.17;95%CI:-0.363 to 0.022;P=0.830).In addition,the results of the subgroup analysis revealed specific variables that were associated with the decrease in relevant sperm parameters.Conclusions:This systematic review and meta-analysis provides compelling evidence supporting a consistent negative association between exposure to ambient SO2 and semen quality parameters.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confin...We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confined LP-N and HLP-N at ambient conditions is revealed.展开更多
Objective In recent decades,China has implemented a series of policies to address air pollution.We aimed to assess the health effects of these policies on stroke burden attributable to ambient fine particulate matter(...Objective In recent decades,China has implemented a series of policies to address air pollution.We aimed to assess the health effects of these policies on stroke burden attributable to ambient fine particulate matter(PM_(2.5)).Methods Joinpoint regression was applied to explore the temporal tendency of stroke burden based on data from the Global Burden of Disease 2019 study.Results The age-standardized rates of disability-adjusted life year(DALY)for stroke attributable to ambient PM2.5 in China,increased dramatically during 1990-2012,subsequently decreased at an annual percentage change(APC)of-1.98[95% confidence interval(CI):-2.26,-1.71]during 2012-2019.For ischemic stroke(IS),the age-standardized DALY rates doubled from 1990 to 2014,and decreased at an APC of-0.83(95%CI:-1.33,-0.33)during 2014-2019.Intracerebral hemorrhage(ICH)showed a substantial increase in age-standardized DALY rates from 1990 to 2003,followed by declining trends,with APCs of-1.46(95%CI:-2.74,-0.16)during 2003-2007 and-3.33(95%CI:-3.61,-3.06)during 2011-2019,respectively.Conversely,the age-standardized DALY rates for subarachnoid hemorrhage(SAH)generally declined during 1990-2019.Conclusion Our results clarified the dynamic changes of the ambient PM_(2.5)-attributable stroke burden in China during 1990-2019,highlighting the health effects of air quality improvement policies.展开更多
Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluat...Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.展开更多
Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conserv...Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.展开更多
Background:Paraplegia after spinal cord ischemia is a devastating condition in the clinic.Here,we develop an awake rabbit model of spinal cord ischemia with delayed paraplegia and explore the influence of ambient temp...Background:Paraplegia after spinal cord ischemia is a devastating condition in the clinic.Here,we develop an awake rabbit model of spinal cord ischemia with delayed paraplegia and explore the influence of ambient temperature on the outcomes after injury.Methods:A total of 47 male rabbits were involved in the present study.Transient spinal cord ischemia was induced by occluding the infrarenal abdominal aorta of awake rabbits at different ambient temperatures.To find the optimal conditions for developing delayed paraplegia,hindlimb motor function after ischemia was evaluated between experiments.Results:The onset and magnitude of ischemic injury varied with the ambient temperature maintained during the peri-i schemia period.More serious spinal cord injury occurred when ischemia was induced at higher temperatures.At 18°C,25-minute ischemia resulted in 74%of rabbits developing delayed paraplegia.At a temperature of 28°C or higher,most of the animals developed acute paraplegia immediately.While at 13°C,rabbits usually regained normal motor function without paraplegia.Conclusion:This awake rabbit model is highly reproducible and will be helpful in future studies of delayed paraplegia after spinal cord ischemia.The ambient temperature must be considered while using this model during investigation of therapeutic interventions.展开更多
The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s...The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.展开更多
The impact of global climate change and air pollution on mental health has become a crucial public health issue.Increased public awareness of health,advancements in medical diagnosis and treatment,the way media outlet...The impact of global climate change and air pollution on mental health has become a crucial public health issue.Increased public awareness of health,advancements in medical diagnosis and treatment,the way media outlets report environmental changes and the variation in social resources affect psychological responses and adaptation methods to climate change and air pollution.In the context of climate change,extreme weather events seriously disrupt people's living environments,and unstable educational environments lead to an increase in mental health issues for students.Air pollution affects students'mental health by increasing the incidence of diseases while decreasing contact with nature,leading to problems such as anxiety,depression,and decreased cognitive function.We call for joint efforts to reduce pollutant emissions at the source,improve energy structures,strengthen environmental monitoring and governance,increase attention to the mental health issues of students,and help student groups build resilience;by establishing public policies,enhancing social support and adjusting lifestyles and habits,we can help students cope with the constantly changing environment and maintain a good level of mental health.Through these comprehensive measures,we can more effectively address the challenges of global climate change and air pollution and promote the achievement of the United Nations Sustainable Development Goals.展开更多
Objective:To explore the relationships among ambient temperature,ischemic stroke severity,and blood pressure.Methods:Meteorological data(2005–2015)were collected from the Guangzhou Meteorological Data Service.Ischemi...Objective:To explore the relationships among ambient temperature,ischemic stroke severity,and blood pressure.Methods:Meteorological data(2005–2015)were collected from the Guangzhou Meteorological Data Service.Ischemic stroke patients from the Department of Neurology of the First Affiliated Hospital,Sun Yat-sen University were retrospectively evaluated,each winter from 2005 to 2015.Patient demographics,baseline measurements,and National Institute of Health Stroke Scale(NIHSS)score were evaluated.Results:Three hundred sixty-two patients were included.The median latency from symptom onset to admission was 2 d(IQR:1–3 d).During recruitment,the highest and lowest temperatures were 39℃and 1.3℃,respectively.Hypertension was the most common comorbidity(75.1%).NIHSS scores at admission and discharge were higher in the cold-exposed group than in the controls regardless of the average temperature at admission.In addition,systolic and diastolic blood pressure values at admission were higher in the cold-exposed group than in the controls.When stratified by hypertensive status,the average and minimum temperatures at admission were negatively associated with systolic and diastolic blood pressure values in hypertensive patients.Reductions in the average and minimum temperatures at symptom onset were associated with more severe stroke.Conclusion:Ischemic stroke patients with symptom onset in winter had higher systolic blood pressure values and more serious neurologic deficits upon admission.展开更多
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U...Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.展开更多
Glycidyl acrylate was synthesized successfully utilizing phase - transfer catalyst and was applied to emulsion polymerization of acrylates as the crosslinking agent. Combined with other two kinds of crosslinking agent...Glycidyl acrylate was synthesized successfully utilizing phase - transfer catalyst and was applied to emulsion polymerization of acrylates as the crosslinking agent. Combined with other two kinds of crosslinking agents, a new type of ecofriendly self - crosslinking adhesive was prepared . Factors affecting the preparation such as reaction temperature, initiator, eniulsifiers, reaction time and so on were studied comprehensively. Properties in relation to pigment printing of the prepared adhesives were also tested and compared with two kinds of commercial adhesives that have been widely applied in printing industry.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N...Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations.Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K,especially(110)surface will collapse completely just after structural relaxation,whereas the decompositions of surfaces can be suppressed by applying pressure,indicating that surface instability causes the cg-N decomposition at low pressure.Due to the saturation of dangling bonds and transferring electrons to the surfaces,saturation with H can stabilize surfaces under ambient conditions,while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces.This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.展开更多
In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), ther...In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambientRadio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum forthe transmission of data without loss or without collision at a specific time. In this paper, the authors proposed anovel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing the AmBC.Novel Matched Filter Detection with Inverse covariance (MFDI), Cyclostationary Feature Detection with Inversecovariance (CFDI) and Hybrid Filter Detection with Inverse covariance (HFDI) approaches are used with AmBCto detect the presence of users at low power levels. The performance of the three detection techniques is measuredusing the parameters of Probability of Detection (PD), Probability of False Alarms (Pfa), Probability of MissedDetection (Pmd), sensing time and throughput at low power or low SNR. The results show that there is a significantimprovement via the HFDI technique for all the parameters.展开更多
Accurately estimating the bearing of a target with two hydrophones requires knowing the precise distance between them.However,in practice,it is difficult to measure this distance accurately due to the influence of cur...Accurately estimating the bearing of a target with two hydrophones requires knowing the precise distance between them.However,in practice,it is difficult to measure this distance accurately due to the influence of current.To solve this problem,we propose a method for extracting the time-domain Green's function between two points in multi-ship scenarios and for extracting the time-domain waveform arrival structure between two hydrophones in real-time based on long samples of ship radiation noise cross-correlation.Using the cross-correlation function of the radiated noise from any ship located in the end-fire direction of the two hydrophones,we can estimate the distance between the hydrophones in real-time.To verify the accuracy of our estimation,we compare the result of azimuth estimation with the actual azimuth based on the azimuth estimation of a cooperative sound source in the maritime environment.Our experimental results show that the proposed method correctly estimates the distance between two hydrophones that cannot be directly measured and estimates the position of a cooperative sound source 4 km away with an average deviation of less than 1.2°.展开更多
Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manne...Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.展开更多
Ambient noise tomography,when applied to a dense linear seismic array,has the capability to provide detailed insights into the fine velocity structures across diverse tectonic settings.The linear station arrangement n...Ambient noise tomography,when applied to a dense linear seismic array,has the capability to provide detailed insights into the fine velocity structures across diverse tectonic settings.The linear station arrangement naturally generates parallel and concentrated ray paths along the array trend.This unique geometry requires specific optimization of the inversion methodology and model parameterization.The Bayesian-based transdimensional inversion method,characterized by its fully non-linear nature and high degree of freedom in parameter settings,offers a powerful tool for ambient noise inversion.To effectively adapt this method to a linear array layout,we propose a modification to the Voronoi cell tessellation built in the transdimensional method.By introducing spatial priority to the Voronoi kernels,we strategically increased the density of Voronoi cells along the direction of the array.We then applied the modified approach to a linear seismic array in the North China Craton and validated its robustness through phase velocity images and resolution tests.Our improved non-uniform sampling technique in the 2-D model space accelerates convergence while simultaneously enhancing model accuracy.Compared with the conventional damped leastsquares method,the proposed algorithm revealed a shear-wave velocity map with notable low-velocity anomalies situated in the middle and lower crust beneath the borders of the Ordos block and its surrounding orogenic belt.Aligned with the crustal structures revealed by receiver function and electrical imaging,our findings indicated that the western and eastern margins of the Ordos block had experienced intensive crustal wedge deformation and re-melting,respectively.展开更多
Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered sign...Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.展开更多
文摘Objective:To investigate the relationship between ambient sulfur dioxide(SO2)exposure and semen quality parameters.Methods:A systematic literature search was conducted to identify relevant studies investigating the association between SO2 exposure and semen quality parameters.This search encompassed the timeframe from January 2000 to May 2023 and included electronic databases such as Web of Science,Google Scholar,PubMed,Cochrane,and Scopus.Pooled effect estimates with 95%confidence intervals(CI)were calculated using percent changes(PC).The meta-analysis included seven studies with 6711 participants and 15087 semen samples.Results:The results revealed a significant negative association between ambient SO2 exposure and certain semen quality parameters.In particular,SO2 exposure was associated with a significant decrease in progressive motility(PC=0.032;95%CI:-0.063 to-0.001;P=0.044)and sperm concentration(PC=-0.020;95%CI:-0.036 to-0.005;P=0.012).However,no statistically significant associations were observed for total sperm count(PC=-0.038;95%CI:-0.079 to 0.003;P=0.070),seminal fluid volume(PC=-0.009;95%CI:-0.048 to-0.030;P=0.662)and sperm motility(PC=-0.17;95%CI:-0.363 to 0.022;P=0.830).In addition,the results of the subgroup analysis revealed specific variables that were associated with the decrease in relevant sperm parameters.Conclusions:This systematic review and meta-analysis provides compelling evidence supporting a consistent negative association between exposure to ambient SO2 and semen quality parameters.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金financially supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the National Natural Science Foundation of China(Grant Nos.12174143 and U2032215)the Natural Science Foundation Project of Liaoning Province(Grant No.2022-MS-377)。
文摘We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confined LP-N and HLP-N at ambient conditions is revealed.
基金supported by National Key Research and Development Program of China(2018YFE0115300,2022YFC3600800,2017YFC0211706)Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(2021-I2M-1-010)+3 种基金National Natural Science Foundation of China(82073658,82070473)National High Level Hospital Clinical Research Funding(2022-GSP-GG-1,2022-GSP-GG-2)Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers,CAMS(2019RU038)National Clinical Research Center for Cardiovascular Diseases,Fuwai Hospital,CAMS(NCRC2020006)。
文摘Objective In recent decades,China has implemented a series of policies to address air pollution.We aimed to assess the health effects of these policies on stroke burden attributable to ambient fine particulate matter(PM_(2.5)).Methods Joinpoint regression was applied to explore the temporal tendency of stroke burden based on data from the Global Burden of Disease 2019 study.Results The age-standardized rates of disability-adjusted life year(DALY)for stroke attributable to ambient PM2.5 in China,increased dramatically during 1990-2012,subsequently decreased at an annual percentage change(APC)of-1.98[95% confidence interval(CI):-2.26,-1.71]during 2012-2019.For ischemic stroke(IS),the age-standardized DALY rates doubled from 1990 to 2014,and decreased at an APC of-0.83(95%CI:-1.33,-0.33)during 2014-2019.Intracerebral hemorrhage(ICH)showed a substantial increase in age-standardized DALY rates from 1990 to 2003,followed by declining trends,with APCs of-1.46(95%CI:-2.74,-0.16)during 2003-2007 and-3.33(95%CI:-3.61,-3.06)during 2011-2019,respectively.Conversely,the age-standardized DALY rates for subarachnoid hemorrhage(SAH)generally declined during 1990-2019.Conclusion Our results clarified the dynamic changes of the ambient PM_(2.5)-attributable stroke burden in China during 1990-2019,highlighting the health effects of air quality improvement policies.
基金supported by National Natural Science Foundation of China(No.62101601)the Fundamental Research Funds for the Central Universities under Grant 2020JBM017Joint Key Project of National Natural Science Foundation of China(No.U22B2004)。
文摘Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.
基金supported by the National Natural Science Foundation of China (grant number 31872240)。
文摘Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.
基金supported by the Science and Technology Research Project(KJQN202212805)of the Chongqing Education Commissionthe Special Funding Project(2021XJS08)of Army Medical University。
文摘Background:Paraplegia after spinal cord ischemia is a devastating condition in the clinic.Here,we develop an awake rabbit model of spinal cord ischemia with delayed paraplegia and explore the influence of ambient temperature on the outcomes after injury.Methods:A total of 47 male rabbits were involved in the present study.Transient spinal cord ischemia was induced by occluding the infrarenal abdominal aorta of awake rabbits at different ambient temperatures.To find the optimal conditions for developing delayed paraplegia,hindlimb motor function after ischemia was evaluated between experiments.Results:The onset and magnitude of ischemic injury varied with the ambient temperature maintained during the peri-i schemia period.More serious spinal cord injury occurred when ischemia was induced at higher temperatures.At 18°C,25-minute ischemia resulted in 74%of rabbits developing delayed paraplegia.At a temperature of 28°C or higher,most of the animals developed acute paraplegia immediately.While at 13°C,rabbits usually regained normal motor function without paraplegia.Conclusion:This awake rabbit model is highly reproducible and will be helpful in future studies of delayed paraplegia after spinal cord ischemia.The ambient temperature must be considered while using this model during investigation of therapeutic interventions.
文摘The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.
文摘The impact of global climate change and air pollution on mental health has become a crucial public health issue.Increased public awareness of health,advancements in medical diagnosis and treatment,the way media outlets report environmental changes and the variation in social resources affect psychological responses and adaptation methods to climate change and air pollution.In the context of climate change,extreme weather events seriously disrupt people's living environments,and unstable educational environments lead to an increase in mental health issues for students.Air pollution affects students'mental health by increasing the incidence of diseases while decreasing contact with nature,leading to problems such as anxiety,depression,and decreased cognitive function.We call for joint efforts to reduce pollutant emissions at the source,improve energy structures,strengthen environmental monitoring and governance,increase attention to the mental health issues of students,and help student groups build resilience;by establishing public policies,enhancing social support and adjusting lifestyles and habits,we can help students cope with the constantly changing environment and maintain a good level of mental health.Through these comprehensive measures,we can more effectively address the challenges of global climate change and air pollution and promote the achievement of the United Nations Sustainable Development Goals.
文摘Objective:To explore the relationships among ambient temperature,ischemic stroke severity,and blood pressure.Methods:Meteorological data(2005–2015)were collected from the Guangzhou Meteorological Data Service.Ischemic stroke patients from the Department of Neurology of the First Affiliated Hospital,Sun Yat-sen University were retrospectively evaluated,each winter from 2005 to 2015.Patient demographics,baseline measurements,and National Institute of Health Stroke Scale(NIHSS)score were evaluated.Results:Three hundred sixty-two patients were included.The median latency from symptom onset to admission was 2 d(IQR:1–3 d).During recruitment,the highest and lowest temperatures were 39℃and 1.3℃,respectively.Hypertension was the most common comorbidity(75.1%).NIHSS scores at admission and discharge were higher in the cold-exposed group than in the controls regardless of the average temperature at admission.In addition,systolic and diastolic blood pressure values at admission were higher in the cold-exposed group than in the controls.When stratified by hypertensive status,the average and minimum temperatures at admission were negatively associated with systolic and diastolic blood pressure values in hypertensive patients.Reductions in the average and minimum temperatures at symptom onset were associated with more severe stroke.Conclusion:Ischemic stroke patients with symptom onset in winter had higher systolic blood pressure values and more serious neurologic deficits upon admission.
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.
基金supported by the National Natural Science Foundation of China (22379121)Shenzhen Foundation Research Fund granted by the Shenzhen Science and Technology Innovation Committee (JCYJ20220530112812028)+1 种基金Fundamental Research Funds for the Central Universities (G2022KY0606)Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (No. 2023FE005)。
文摘Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.
文摘Glycidyl acrylate was synthesized successfully utilizing phase - transfer catalyst and was applied to emulsion polymerization of acrylates as the crosslinking agent. Combined with other two kinds of crosslinking agents, a new type of ecofriendly self - crosslinking adhesive was prepared . Factors affecting the preparation such as reaction temperature, initiator, eniulsifiers, reaction time and so on were studied comprehensively. Properties in relation to pigment printing of the prepared adhesives were also tested and compared with two kinds of commercial adhesives that have been widely applied in printing industry.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金supported by the National Natural Science Foundation of China(Grant No.U2030114)CASHIPS Director's Fund(Grant No.YZJJ202207-CX)。
文摘Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations.Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K,especially(110)surface will collapse completely just after structural relaxation,whereas the decompositions of surfaces can be suppressed by applying pressure,indicating that surface instability causes the cg-N decomposition at low pressure.Due to the saturation of dangling bonds and transferring electrons to the surfaces,saturation with H can stabilize surfaces under ambient conditions,while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces.This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.
基金the Ministry of Higher Education Malaysia for funding this research project through Fundamental Research Grant Scheme(FRGS)with Project Code:FRGS/1/2022/TK02/UCSI/02/1 and also to UCSI University.
文摘In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambientRadio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum forthe transmission of data without loss or without collision at a specific time. In this paper, the authors proposed anovel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing the AmBC.Novel Matched Filter Detection with Inverse covariance (MFDI), Cyclostationary Feature Detection with Inversecovariance (CFDI) and Hybrid Filter Detection with Inverse covariance (HFDI) approaches are used with AmBCto detect the presence of users at low power levels. The performance of the three detection techniques is measuredusing the parameters of Probability of Detection (PD), Probability of False Alarms (Pfa), Probability of MissedDetection (Pmd), sensing time and throughput at low power or low SNR. The results show that there is a significantimprovement via the HFDI technique for all the parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No.62171148)。
文摘Accurately estimating the bearing of a target with two hydrophones requires knowing the precise distance between them.However,in practice,it is difficult to measure this distance accurately due to the influence of current.To solve this problem,we propose a method for extracting the time-domain Green's function between two points in multi-ship scenarios and for extracting the time-domain waveform arrival structure between two hydrophones in real-time based on long samples of ship radiation noise cross-correlation.Using the cross-correlation function of the radiated noise from any ship located in the end-fire direction of the two hydrophones,we can estimate the distance between the hydrophones in real-time.To verify the accuracy of our estimation,we compare the result of azimuth estimation with the actual azimuth based on the azimuth estimation of a cooperative sound source in the maritime environment.Our experimental results show that the proposed method correctly estimates the distance between two hydrophones that cannot be directly measured and estimates the position of a cooperative sound source 4 km away with an average deviation of less than 1.2°.
基金the National Natural Science Foundation of China(NSFC,Grant No.51972178)the Natural Science Foundation of Ningbo(2022J139)the Ningbo Yongjiang Talent Introduction Programme(2022A-227-G).
文摘Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.
基金funded by the Special Fund of the Institute of Geophysics,China Earthquake Administration (Nos.DQJB21K52,and DQJB22R33)。
文摘Ambient noise tomography,when applied to a dense linear seismic array,has the capability to provide detailed insights into the fine velocity structures across diverse tectonic settings.The linear station arrangement naturally generates parallel and concentrated ray paths along the array trend.This unique geometry requires specific optimization of the inversion methodology and model parameterization.The Bayesian-based transdimensional inversion method,characterized by its fully non-linear nature and high degree of freedom in parameter settings,offers a powerful tool for ambient noise inversion.To effectively adapt this method to a linear array layout,we propose a modification to the Voronoi cell tessellation built in the transdimensional method.By introducing spatial priority to the Voronoi kernels,we strategically increased the density of Voronoi cells along the direction of the array.We then applied the modified approach to a linear seismic array in the North China Craton and validated its robustness through phase velocity images and resolution tests.Our improved non-uniform sampling technique in the 2-D model space accelerates convergence while simultaneously enhancing model accuracy.Compared with the conventional damped leastsquares method,the proposed algorithm revealed a shear-wave velocity map with notable low-velocity anomalies situated in the middle and lower crust beneath the borders of the Ordos block and its surrounding orogenic belt.Aligned with the crustal structures revealed by receiver function and electrical imaging,our findings indicated that the western and eastern margins of the Ordos block had experienced intensive crustal wedge deformation and re-melting,respectively.
文摘Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.