Many types of buildings have been widely constructed in the vicinity of subway lines in China.Normal life and business activities are hampered by excessive subway-induced vibrations.This study aims to determine the in...Many types of buildings have been widely constructed in the vicinity of subway lines in China.Normal life and business activities are hampered by excessive subway-induced vibrations.This study aims to determine the influence of structure characteristics on structure-borne vibrations,generally based on experimental results.Vibration measurements were performed in four typical sites in Wuxi,China,involving over-track buildings,along-track buildings,frame structure buildings and a masonry building.Special structure designs like structure transfer floor were also included.Then,the captured data was analyzed in the time domain and the frequency domain.Furthermore,the influence of building location,structure type and structure layout was investigated.Finally,vibrations were evaluated with ISO and Chinese criteria and structure optimization for vibration attenuation was proposed.It is found that over-track buildings are more severely affected than along-track buildings.Higher frequency contents(20‒60 Hz)in over-track buildings and lower frequency contents(0‒10 Hz)in along-track buildings should be seriously considered in vibration control.Weaker structure member joints and lower material strength would be beneficial to over-track buildings while the inverse situation would be beneficial to along-track buildings.The application of structure transfer floor‒generally stiffer structure members and structure discontinuity‒is also beneficial.展开更多
Physiological and behavioral systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds ...Physiological and behavioral systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds on the ground at low tide, and climbs the trees two-three hours before the water arrival to avoid submersion. Moreover, it regularly settles on the trunk roughly 40 centimeters above the level that the water will reach, in spite of the irregular East African tidal pattern. Migration usually takes place about twice a day unless at Neap Tide, when snails may remain on the dry ground. Biological clock cannot account for water level foreseeing while direct visual cues or chemical information from the water itself or from previous migrations have already been experimentally discarded. Indirect cues could be hypothesize related to the effect of the oceanic wave reaching the coast and the barrier reef (seismic noise), or alternatively related to changes in ground resistivity (self potential) caused by the sea water moving close. To verify these hypotheses a seismic noise and self potential survey was carried out at Mida Creek (Kenya). This paper presents the first results of the seismic noise measurements. A significant correlation between the time evolution (mean value) of the low frequency seismic signal, tides, and snails movements has been identified.展开更多
The practical difficulties presented by forced vibration testing of large steel structures, such as tall buildings, transmission lines or bridges, led to an increased interest in structural monitoring through ambient ...The practical difficulties presented by forced vibration testing of large steel structures, such as tall buildings, transmission lines or bridges, led to an increased interest in structural monitoring through ambient vibrations, which usually allows the proper identification of modal properties, natural frequencies, damping and modes of vibration. Changes in these modal properties constitute an indication of structural damage, which may then be assessed on the basis of experimental evidence. The authors proposed an approach to determine the so-called damage damping and stiffness matrices, which are essential to identify the location and intensity of damage. No restrictions were introduced on the damping matrix of the system. The approach requires ambient vibration data of all relevant coordinates used in the structural model, which are processed employing the SSI method. In practice, the identification method is seriously hampered by ambient factors such as temperature or humidity. In general those effects must be filtered out in other to obtain a reliable diagnosis of damage, approach that demands long term monitoring. In this paper, an alternative approach is explored, based on the introduction of error damping and stiffness matrices. Data on both matrices is generated on the basis of observed variations of structural member stiffness and damping caused by ambient factors. The influence of this uncertainty on the identified spectral properties is assessed by simulation.展开更多
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
In this study,the methodology and results of ambient vibration-based investigations of the historical Tash Mosque in Kosovo and a 3-story historical building in Bulgaria are presented.The investi gations include full-...In this study,the methodology and results of ambient vibration-based investigations of the historical Tash Mosque in Kosovo and a 3-story historical building in Bulgaria are presented.The investi gations include full-scale in situ testing of both structures due to ambient vibrations induced by micro-seismic,wind,traffic,and other human activities.To this aim,Ranger seismometers and Kinemetric products were used.Measurements were performed in both horizontal directions in several points along the structures'height utilizing a high-speed data acquisition device.All recorded data have been analyzed and processed by the software developed at IZIIS,and then the processed data were used as input for modal analysis.The basic assumption is that the excitation can be considered as a stationary random process to have a relatively flat spectrum.The paper clearly describes the procedure used for investigations and presents the dynamic properties of the whole structures.The inv estigated structures are both historical buildings and defined as architectural heritage and the outcome of this study including the natural vibration frequencies and mode shapes)can be very benefi-cial for the verification stage of the analytical/numerical models for future retro-fiting/rehabilitation schemes.展开更多
Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no ...Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no need to interrupt its use.The present work aims to develop a numerical model to represent the global structural behavior of a vessel breasting dolphin using a technique that is simple and cheap in order to obtain a fast answer about the stiffness of a pier after the collision of ships with capacity up to 400,000 t.To determine the modes of vibration,one accelerometer was installed on the breasting dolphin located on the pier and a frequency domain technic was conducted over recorded data to obtain modal parameters of the structure.In situ measurements were compared to data from a finite element model based on the original structural design in order to adapt the model to accurately represent the actual behavior of the system.This allowed a reliable structural analysis that accounted for existing structural damage and imperfections.The results of the experiment presented herein are the numerical characterization of the structure,along with the structural analysis to assess the degree of damage currently observed on the system.It is noted that the dolphin subjected to ship impacts presents a reduction in stiffness of approximately10%and its global damage level can be monitored from now after new accidents.展开更多
This article describes an improved data acquisition system from a previous system dedicated to one-sensor site studies, aimed at recording ambient vibrations (microtremors). A multi-channel and/or remote triggering sy...This article describes an improved data acquisition system from a previous system dedicated to one-sensor site studies, aimed at recording ambient vibrations (microtremors). A multi-channel and/or remote triggering system is proposed. The system was conceived by IRD-Leas, France, and used at ISTerre, France, for research activities. The size, weight of this high quality system and its autonomy (no need to be connected to a laptop) make it a real portable device. The system acquires data with 24-bit delta-sigma ADCs in the 10 - 1000 sps range at 10 - 20 bit resolution on up to 18 channels in the multi-channel version. The input stage dynamics is available at ±2.5 V or ±5 V. The dynamic range varies, for example, from 108 dB at 100 sps to 90 dB at 250 sps. Gain is selectable from 1 (0 dB) to 8192 (78 dB) by powers of two (6 dB). Its very low level of internal noise allows recording of very low tension signals without missing code. Continuous recording and GPS may also be implemented in the system. While primarily dedicated to ambient vibration recordings, this system can be connected to any type of device delivering an output tension in the ±5 V range.展开更多
Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of...Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.展开更多
The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the ...The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the free vibration analysis and the ambient vibration properties of the bridge were determined through field testing. The experimental and numerical results of natural frequencies and the associated mode shapes were compared, and the high accuracy between them shows that the 3D model is capable of approximately representing the dynamic behavior of the bridge and the use of ambient vibration survives in future testing of the bridge. These dynamic characteristics can be used as the basis for updating the finite element model and also for global damage detection.展开更多
This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between th...This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.展开更多
The main purpose of the present study is to enhance high-level noisy data by a wavelet-based iterative filtering algorithm for identification of natural frequencies during ambient wind vibrational tests on a petrochem...The main purpose of the present study is to enhance high-level noisy data by a wavelet-based iterative filtering algorithm for identification of natural frequencies during ambient wind vibrational tests on a petrochemical process tower.Most of denoising methods fail to filter such noise properly.Both the signal-to-noise ratio and the peak signal-to-noise ratio are small.Multiresolution-based one-step and variational-based filtering methods fail to denoise properly with thresholds obtained by theoretical or empirical method.Duc to the fact that it is impossible to completely denoise such high-level noisy data,the enhancing approach is used to improve the data quality,which is the main novelty from the application point of view here.For this iterative method,a simple computational approach is proposed to estimate the dynamic threshold values.Hence,different thresholds can be obtained for different recorded signals in one ambient test.This is in contrast to commonly used approaches recommending one global threshold estimated mainly by an empirical method.After the enhancements,modal frequencies are directly detected by the cross wavelet transform(XWT),the spectral power density and autocorrelation of wavelet coefficients.Estimated frequencies are then compared with those of an undamaged-model,simulated by the finite element method.展开更多
On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the ...On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the impulse response function of the original system. OLPIT is a new method of identification modal parameters from response of structures under ambient excitation. OLPIT is different from NExT (natural excitation technique) based on ITD method in four aspects: ① The algorithm is improved by the singular-value decomposition (SVD). ② Multi-value of b r in the Ibrahim Time Domain (ITD) is avoided. ③ OLPIT is used in both SIMO (single input, multi-output) and MIMO (multi input, multi-output). ④ The precision of modal parameter identificatioin is improved. The simulation studies demonstrate that the method is effective in identifying complex modes even with close frequencies and is robust to measurement noise.展开更多
An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dyn...An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dynamic characteristics of the bridge,i.e.natural frequencies,mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm(ERA).Then,these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms(GA)to solve it.From the results of the ambient vibration test of this type of bridge,it is concluded that two-dimensional mode shapes exist:in the longitudinal and transverse;and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating.The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.展开更多
Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nan...Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nanwangshan Campus of the China University of Geosciences(Wuhan). This network was running from April 9 to May 9 of 2018. During this period, the seismometers recorded the May 4, 2018 M6.9 Hawaii earthquake. From the recorded waveforms, we could observe clearly the P and S arrivals, and the corresponding particle motions. Analysis of continuous observations of ambient noise shows obvious fluctuation of vibration intensity inside of the campus. The campus is quietest from 0 to 5 am. From 5 am on, the vibration intensity increases, and reaches the peak of entire day at 12 am. The amplitude then decreases to a very low level at 19:30 to 20:00 pm, and reaches another strong noisy time at 21:00 to 21:30 pm. After 21:30 pm, the intensity goes down slowly. We also observed seismic signals that were generated by the interaction of speed-control hump cars and ground. By taking the envelope and smooth operations, we observe different characteristics for different car speeds, which suggests that seismic monitoring approaches can be used for speed measurement of cars. This kind of small seismic network running in a real time fashion, would greatly help understanding of the sources of ambient noise at high frequency bands in interested areas. Analysis of a long-term observed dataset, and real time illustration will help to strengthen campus security and high-precision laboratory deployments, and also contribute to research atmosphere in earthquake science.展开更多
Being able to significantly reduce system installation time and cost,wireless sensing technology has attracted much interest in the structural health monitoring(SHM)community.This paper reports the field application o...Being able to significantly reduce system installation time and cost,wireless sensing technology has attracted much interest in the structural health monitoring(SHM)community.This paper reports the field application of a wireless sensing system on a 4-span highway bridge located in Wayne,New Jersey in the US.Bridge vibration due to traffic and ambient excitation is measured.To enhance the signal-to-noise ratio,a low-noise high-gain signal conditioning module is developed for the wireless sensing system.Nineteen wireless and nineteen cabled accelerometers are first installed along the sidewalk of two neighboring bridge spans.The performance of the wireless sensing system is compared with the high-precision cabled sensing system.In the next series of testing,16 wireless accelerometers are installed under the deck of another bridge span,forming a 4×4 array.Operating deflection analysis is successfully conducted using the wireless measurement of traffic and ambient vibrations.展开更多
基金National Basic Research Program of China(973 Program)under Grant No.2014CB049101。
文摘Many types of buildings have been widely constructed in the vicinity of subway lines in China.Normal life and business activities are hampered by excessive subway-induced vibrations.This study aims to determine the influence of structure characteristics on structure-borne vibrations,generally based on experimental results.Vibration measurements were performed in four typical sites in Wuxi,China,involving over-track buildings,along-track buildings,frame structure buildings and a masonry building.Special structure designs like structure transfer floor were also included.Then,the captured data was analyzed in the time domain and the frequency domain.Furthermore,the influence of building location,structure type and structure layout was investigated.Finally,vibrations were evaluated with ISO and Chinese criteria and structure optimization for vibration attenuation was proposed.It is found that over-track buildings are more severely affected than along-track buildings.Higher frequency contents(20‒60 Hz)in over-track buildings and lower frequency contents(0‒10 Hz)in along-track buildings should be seriously considered in vibration control.Weaker structure member joints and lower material strength would be beneficial to over-track buildings while the inverse situation would be beneficial to along-track buildings.The application of structure transfer floor‒generally stiffer structure members and structure discontinuity‒is also beneficial.
文摘Physiological and behavioral systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds on the ground at low tide, and climbs the trees two-three hours before the water arrival to avoid submersion. Moreover, it regularly settles on the trunk roughly 40 centimeters above the level that the water will reach, in spite of the irregular East African tidal pattern. Migration usually takes place about twice a day unless at Neap Tide, when snails may remain on the dry ground. Biological clock cannot account for water level foreseeing while direct visual cues or chemical information from the water itself or from previous migrations have already been experimentally discarded. Indirect cues could be hypothesize related to the effect of the oceanic wave reaching the coast and the barrier reef (seismic noise), or alternatively related to changes in ground resistivity (self potential) caused by the sea water moving close. To verify these hypotheses a seismic noise and self potential survey was carried out at Mida Creek (Kenya). This paper presents the first results of the seismic noise measurements. A significant correlation between the time evolution (mean value) of the low frequency seismic signal, tides, and snails movements has been identified.
文摘The practical difficulties presented by forced vibration testing of large steel structures, such as tall buildings, transmission lines or bridges, led to an increased interest in structural monitoring through ambient vibrations, which usually allows the proper identification of modal properties, natural frequencies, damping and modes of vibration. Changes in these modal properties constitute an indication of structural damage, which may then be assessed on the basis of experimental evidence. The authors proposed an approach to determine the so-called damage damping and stiffness matrices, which are essential to identify the location and intensity of damage. No restrictions were introduced on the damping matrix of the system. The approach requires ambient vibration data of all relevant coordinates used in the structural model, which are processed employing the SSI method. In practice, the identification method is seriously hampered by ambient factors such as temperature or humidity. In general those effects must be filtered out in other to obtain a reliable diagnosis of damage, approach that demands long term monitoring. In this paper, an alternative approach is explored, based on the introduction of error damping and stiffness matrices. Data on both matrices is generated on the basis of observed variations of structural member stiffness and damping caused by ambient factors. The influence of this uncertainty on the identified spectral properties is assessed by simulation.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
文摘In this study,the methodology and results of ambient vibration-based investigations of the historical Tash Mosque in Kosovo and a 3-story historical building in Bulgaria are presented.The investi gations include full-scale in situ testing of both structures due to ambient vibrations induced by micro-seismic,wind,traffic,and other human activities.To this aim,Ranger seismometers and Kinemetric products were used.Measurements were performed in both horizontal directions in several points along the structures'height utilizing a high-speed data acquisition device.All recorded data have been analyzed and processed by the software developed at IZIIS,and then the processed data were used as input for modal analysis.The basic assumption is that the excitation can be considered as a stationary random process to have a relatively flat spectrum.The paper clearly describes the procedure used for investigations and presents the dynamic properties of the whole structures.The inv estigated structures are both historical buildings and defined as architectural heritage and the outcome of this study including the natural vibration frequencies and mode shapes)can be very benefi-cial for the verification stage of the analytical/numerical models for future retro-fiting/rehabilitation schemes.
文摘Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no need to interrupt its use.The present work aims to develop a numerical model to represent the global structural behavior of a vessel breasting dolphin using a technique that is simple and cheap in order to obtain a fast answer about the stiffness of a pier after the collision of ships with capacity up to 400,000 t.To determine the modes of vibration,one accelerometer was installed on the breasting dolphin located on the pier and a frequency domain technic was conducted over recorded data to obtain modal parameters of the structure.In situ measurements were compared to data from a finite element model based on the original structural design in order to adapt the model to accurately represent the actual behavior of the system.This allowed a reliable structural analysis that accounted for existing structural damage and imperfections.The results of the experiment presented herein are the numerical characterization of the structure,along with the structural analysis to assess the degree of damage currently observed on the system.It is noted that the dolphin subjected to ship impacts presents a reduction in stiffness of approximately10%and its global damage level can be monitored from now after new accidents.
基金funded by IRD(Institut de Recherche pour le Developpement),a French public research institute,and LEAS company.
文摘This article describes an improved data acquisition system from a previous system dedicated to one-sensor site studies, aimed at recording ambient vibrations (microtremors). A multi-channel and/or remote triggering system is proposed. The system was conceived by IRD-Leas, France, and used at ISTerre, France, for research activities. The size, weight of this high quality system and its autonomy (no need to be connected to a laptop) make it a real portable device. The system acquires data with 24-bit delta-sigma ADCs in the 10 - 1000 sps range at 10 - 20 bit resolution on up to 18 channels in the multi-channel version. The input stage dynamics is available at ±2.5 V or ±5 V. The dynamic range varies, for example, from 108 dB at 100 sps to 90 dB at 250 sps. Gain is selectable from 1 (0 dB) to 8192 (78 dB) by powers of two (6 dB). Its very low level of internal noise allows recording of very low tension signals without missing code. Continuous recording and GPS may also be implemented in the system. While primarily dedicated to ambient vibration recordings, this system can be connected to any type of device delivering an output tension in the ±5 V range.
基金the Ministry of Construction and Transportation,Korea Highway Corporation and Hyundai E&C Co.Ltd.under Project No.R&D/970003-2.
文摘Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.
基金This paper is supported by the programfor New Century Excellent Tal-ents in University (2004) .
文摘The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the free vibration analysis and the ambient vibration properties of the bridge were determined through field testing. The experimental and numerical results of natural frequencies and the associated mode shapes were compared, and the high accuracy between them shows that the 3D model is capable of approximately representing the dynamic behavior of the bridge and the use of ambient vibration survives in future testing of the bridge. These dynamic characteristics can be used as the basis for updating the finite element model and also for global damage detection.
文摘This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.
基金The authors gratefully acknowledge the financial support of Iran National Science Foundation(INSF).
文摘The main purpose of the present study is to enhance high-level noisy data by a wavelet-based iterative filtering algorithm for identification of natural frequencies during ambient wind vibrational tests on a petrochemical process tower.Most of denoising methods fail to filter such noise properly.Both the signal-to-noise ratio and the peak signal-to-noise ratio are small.Multiresolution-based one-step and variational-based filtering methods fail to denoise properly with thresholds obtained by theoretical or empirical method.Duc to the fact that it is impossible to completely denoise such high-level noisy data,the enhancing approach is used to improve the data quality,which is the main novelty from the application point of view here.For this iterative method,a simple computational approach is proposed to estimate the dynamic threshold values.Hence,different thresholds can be obtained for different recorded signals in one ambient test.This is in contrast to commonly used approaches recommending one global threshold estimated mainly by an empirical method.After the enhancements,modal frequencies are directly detected by the cross wavelet transform(XWT),the spectral power density and autocorrelation of wavelet coefficients.Estimated frequencies are then compared with those of an undamaged-model,simulated by the finite element method.
基金National Natural Science Foundation of China ( No.19972 0 16 )
文摘On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the impulse response function of the original system. OLPIT is a new method of identification modal parameters from response of structures under ambient excitation. OLPIT is different from NExT (natural excitation technique) based on ITD method in four aspects: ① The algorithm is improved by the singular-value decomposition (SVD). ② Multi-value of b r in the Ibrahim Time Domain (ITD) is avoided. ③ OLPIT is used in both SIMO (single input, multi-output) and MIMO (multi input, multi-output). ④ The precision of modal parameter identificatioin is improved. The simulation studies demonstrate that the method is effective in identifying complex modes even with close frequencies and is robust to measurement noise.
文摘An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dynamic characteristics of the bridge,i.e.natural frequencies,mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm(ERA).Then,these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms(GA)to solve it.From the results of the ambient vibration test of this type of bridge,it is concluded that two-dimensional mode shapes exist:in the longitudinal and transverse;and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating.The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.
基金the National Key R&D Program of China(No.2018YFC0603500)Programme on Global Change and Air-Sea Interaction(No.GASI-GEOGE-02)+1 种基金NSFC(Nos.41474050,41874062)one of the outcomes of the research projects(No.Q20203004),analysis of campus ambient noise monitored by short-seismometers funded by Scientific Research Foundation of the Education Department of Hubei Province,China。
文摘Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nanwangshan Campus of the China University of Geosciences(Wuhan). This network was running from April 9 to May 9 of 2018. During this period, the seismometers recorded the May 4, 2018 M6.9 Hawaii earthquake. From the recorded waveforms, we could observe clearly the P and S arrivals, and the corresponding particle motions. Analysis of continuous observations of ambient noise shows obvious fluctuation of vibration intensity inside of the campus. The campus is quietest from 0 to 5 am. From 5 am on, the vibration intensity increases, and reaches the peak of entire day at 12 am. The amplitude then decreases to a very low level at 19:30 to 20:00 pm, and reaches another strong noisy time at 21:00 to 21:30 pm. After 21:30 pm, the intensity goes down slowly. We also observed seismic signals that were generated by the interaction of speed-control hump cars and ground. By taking the envelope and smooth operations, we observe different characteristics for different car speeds, which suggests that seismic monitoring approaches can be used for speed measurement of cars. This kind of small seismic network running in a real time fashion, would greatly help understanding of the sources of ambient noise at high frequency bands in interested areas. Analysis of a long-term observed dataset, and real time illustration will help to strengthen campus security and high-precision laboratory deployments, and also contribute to research atmosphere in earthquake science.
基金This research is partially sponsored by the National Science Foundation,under grant number CMMI-0928095(Program Manager:Dr.Shih-Chi Liu).
文摘Being able to significantly reduce system installation time and cost,wireless sensing technology has attracted much interest in the structural health monitoring(SHM)community.This paper reports the field application of a wireless sensing system on a 4-span highway bridge located in Wayne,New Jersey in the US.Bridge vibration due to traffic and ambient excitation is measured.To enhance the signal-to-noise ratio,a low-noise high-gain signal conditioning module is developed for the wireless sensing system.Nineteen wireless and nineteen cabled accelerometers are first installed along the sidewalk of two neighboring bridge spans.The performance of the wireless sensing system is compared with the high-precision cabled sensing system.In the next series of testing,16 wireless accelerometers are installed under the deck of another bridge span,forming a 4×4 array.Operating deflection analysis is successfully conducted using the wireless measurement of traffic and ambient vibrations.